Metamath Proof Explorer


Theorem assaassd

Description: Left-associative property of an associative algebra, deduction version. (Contributed by Thierry Arnoux, 15-Feb-2026)

Ref Expression
Hypotheses assaassd.1
|- V = ( Base ` W )
assaassd.2
|- F = ( Scalar ` W )
assaassd.3
|- B = ( Base ` F )
assaassd.4
|- .x. = ( .s ` W )
assaassd.5
|- .X. = ( .r ` W )
assaassd.6
|- ( ph -> W e. AssAlg )
assaassd.7
|- ( ph -> A e. B )
assaassd.8
|- ( ph -> X e. V )
assaassd.9
|- ( ph -> Y e. V )
Assertion assaassd
|- ( ph -> ( ( A .x. X ) .X. Y ) = ( A .x. ( X .X. Y ) ) )

Proof

Step Hyp Ref Expression
1 assaassd.1
 |-  V = ( Base ` W )
2 assaassd.2
 |-  F = ( Scalar ` W )
3 assaassd.3
 |-  B = ( Base ` F )
4 assaassd.4
 |-  .x. = ( .s ` W )
5 assaassd.5
 |-  .X. = ( .r ` W )
6 assaassd.6
 |-  ( ph -> W e. AssAlg )
7 assaassd.7
 |-  ( ph -> A e. B )
8 assaassd.8
 |-  ( ph -> X e. V )
9 assaassd.9
 |-  ( ph -> Y e. V )
10 1 2 3 4 5 assaass
 |-  ( ( W e. AssAlg /\ ( A e. B /\ X e. V /\ Y e. V ) ) -> ( ( A .x. X ) .X. Y ) = ( A .x. ( X .X. Y ) ) )
11 6 7 8 9 10 syl13anc
 |-  ( ph -> ( ( A .x. X ) .X. Y ) = ( A .x. ( X .X. Y ) ) )