Metamath Proof Explorer


Axiom ax-8d

Description: Distinct variable version of ax-7 . (Contributed by Mario Carneiro, 14-Aug-2015)

Ref Expression
Assertion ax-8d ( 𝑥 = 𝑦 → ( 𝑥 = 𝑧𝑦 = 𝑧 ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 vx 𝑥
1 0 cv 𝑥
2 vy 𝑦
3 2 cv 𝑦
4 1 3 wceq 𝑥 = 𝑦
5 vz 𝑧
6 5 cv 𝑧
7 1 6 wceq 𝑥 = 𝑧
8 3 6 wceq 𝑦 = 𝑧
9 7 8 wi ( 𝑥 = 𝑧𝑦 = 𝑧 )
10 4 9 wi ( 𝑥 = 𝑦 → ( 𝑥 = 𝑧𝑦 = 𝑧 ) )