Metamath Proof Explorer
Description: Distinct variable version of ax-7 . (Contributed by Mario Carneiro, 14-Aug-2015)
|
|
Ref |
Expression |
|
Assertion |
ax-8d |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝑧 → 𝑦 = 𝑧 ) ) |
Detailed syntax breakdown
| Step |
Hyp |
Ref |
Expression |
| 0 |
|
vx |
⊢ 𝑥 |
| 1 |
0
|
cv |
⊢ 𝑥 |
| 2 |
|
vy |
⊢ 𝑦 |
| 3 |
2
|
cv |
⊢ 𝑦 |
| 4 |
1 3
|
wceq |
⊢ 𝑥 = 𝑦 |
| 5 |
|
vz |
⊢ 𝑧 |
| 6 |
5
|
cv |
⊢ 𝑧 |
| 7 |
1 6
|
wceq |
⊢ 𝑥 = 𝑧 |
| 8 |
3 6
|
wceq |
⊢ 𝑦 = 𝑧 |
| 9 |
7 8
|
wi |
⊢ ( 𝑥 = 𝑧 → 𝑦 = 𝑧 ) |
| 10 |
4 9
|
wi |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝑧 → 𝑦 = 𝑧 ) ) |