Metamath Proof Explorer
Description: Distinct variable version of ax-7 . (Contributed by Mario Carneiro, 14-Aug-2015)
|
|
Ref |
Expression |
|
Assertion |
ax-8d |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝑧 → 𝑦 = 𝑧 ) ) |
Detailed syntax breakdown
Step |
Hyp |
Ref |
Expression |
0 |
|
vx |
⊢ 𝑥 |
1 |
0
|
cv |
⊢ 𝑥 |
2 |
|
vy |
⊢ 𝑦 |
3 |
2
|
cv |
⊢ 𝑦 |
4 |
1 3
|
wceq |
⊢ 𝑥 = 𝑦 |
5 |
|
vz |
⊢ 𝑧 |
6 |
5
|
cv |
⊢ 𝑧 |
7 |
1 6
|
wceq |
⊢ 𝑥 = 𝑧 |
8 |
3 6
|
wceq |
⊢ 𝑦 = 𝑧 |
9 |
7 8
|
wi |
⊢ ( 𝑥 = 𝑧 → 𝑦 = 𝑧 ) |
10 |
4 9
|
wi |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝑧 → 𝑦 = 𝑧 ) ) |