Database SUPPLEMENTARY MATERIAL (USERS' MATHBOXES) Mathbox for Thierry Arnoux Number Theory The Ternary Goldbach Conjecture: Final Statement ax-ros336  
				
		 
		
			
		 
		Description:   Theorem 13. of RosserSchoenfeld  p. 71.  Theorem chpchtlim  states that
     the psi  and theta  function are asymtotic to each other; this axiom
     postulates an upper bound for their difference.  This is stated as an
     axiom until a formal proof can be provided.  (Contributed by Thierry
     Arnoux , 28-Dec-2021) 
		
			
				
					Ref 
					Expression 
				 
				
					Assertion 
					ax-ros336 ⊢   ∀ 𝑥   ∈  ℝ+  ( ( ψ ‘ 𝑥  )  −  ( θ ‘ 𝑥  ) )  <  ( ( 1 . _  4 _  2 _  6 2 )  ·  ( √ ‘ 𝑥  ) )  
			
		 
		
				Detailed syntax breakdown 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							0 
								
							 
							vx ⊢  𝑥   
						
							1 
								
							 
							crp ⊢  ℝ+   
						
							2 
								
							 
							cchp ⊢  ψ  
						
							3 
								0 
							 
							cv ⊢  𝑥   
						
							4 
								3  2 
							 
							cfv ⊢  ( ψ ‘ 𝑥  )  
						
							5 
								
							 
							cmin ⊢   −   
						
							6 
								
							 
							ccht ⊢  θ  
						
							7 
								3  6 
							 
							cfv ⊢  ( θ ‘ 𝑥  )  
						
							8 
								4  7  5 
							 
							co ⊢  ( ( ψ ‘ 𝑥  )  −  ( θ ‘ 𝑥  ) )  
						
							9 
								
							 
							clt ⊢   <   
						
							10 
								
							 
							c1 ⊢  1  
						
							11 
								
							 
							cdp ⊢  .  
						
							12 
								
							 
							c4 ⊢  4  
						
							13 
								
							 
							c2 ⊢  2  
						
							14 
								
							 
							c6 ⊢  6  
						
							15 
								14  13 
							 
							cdp2 ⊢  _  6 2  
						
							16 
								13  15 
							 
							cdp2 ⊢  _  2 _  6 2  
						
							17 
								12  16 
							 
							cdp2 ⊢  _  4 _  2 _  6 2  
						
							18 
								10  17  11 
							 
							co ⊢  ( 1 . _  4 _  2 _  6 2 )  
						
							19 
								
							 
							cmul ⊢   ·   
						
							20 
								
							 
							csqrt ⊢  √  
						
							21 
								3  20 
							 
							cfv ⊢  ( √ ‘ 𝑥  )  
						
							22 
								18  21  19 
							 
							co ⊢  ( ( 1 . _  4 _  2 _  6 2 )  ·  ( √ ‘ 𝑥  ) )  
						
							23 
								8  22  9 
							 
							wbr ⊢  ( ( ψ ‘ 𝑥  )  −  ( θ ‘ 𝑥  ) )  <  ( ( 1 . _  4 _  2 _  6 2 )  ·  ( √ ‘ 𝑥  ) )  
						
							24 
								23  0  1 
							 
							wral ⊢  ∀ 𝑥   ∈  ℝ+  ( ( ψ ‘ 𝑥  )  −  ( θ ‘ 𝑥  ) )  <  ( ( 1 . _  4 _  2 _  6 2 )  ·  ( √ ‘ 𝑥  ) )