| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hgt750lemc.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 2 | 1 | nnzd | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 3 |  | chpvalz | ⊢ ( 𝑁  ∈  ℤ  →  ( ψ ‘ 𝑁 )  =  Σ 𝑗  ∈  ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 ) ) | 
						
							| 4 | 2 3 | syl | ⊢ ( 𝜑  →  ( ψ ‘ 𝑁 )  =  Σ 𝑗  ∈  ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 ) ) | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑥  =  𝑁  →  ( ψ ‘ 𝑥 )  =  ( ψ ‘ 𝑁 ) ) | 
						
							| 6 |  | oveq2 | ⊢ ( 𝑥  =  𝑁  →  ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 )  ·  𝑥 )  =  ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 )  ·  𝑁 ) ) | 
						
							| 7 | 5 6 | breq12d | ⊢ ( 𝑥  =  𝑁  →  ( ( ψ ‘ 𝑥 )  <  ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 )  ·  𝑥 )  ↔  ( ψ ‘ 𝑁 )  <  ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 )  ·  𝑁 ) ) ) | 
						
							| 8 |  | ax-ros335 | ⊢ ∀ 𝑥  ∈  ℝ+ ( ψ ‘ 𝑥 )  <  ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 )  ·  𝑥 ) | 
						
							| 9 | 8 | a1i | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ℝ+ ( ψ ‘ 𝑥 )  <  ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 )  ·  𝑥 ) ) | 
						
							| 10 | 1 | nnrpd | ⊢ ( 𝜑  →  𝑁  ∈  ℝ+ ) | 
						
							| 11 | 7 9 10 | rspcdva | ⊢ ( 𝜑  →  ( ψ ‘ 𝑁 )  <  ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 )  ·  𝑁 ) ) | 
						
							| 12 | 4 11 | eqbrtrrd | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 )  <  ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 )  ·  𝑁 ) ) |