Step |
Hyp |
Ref |
Expression |
1 |
|
hgt750lemc.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
2 |
1
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
3 |
|
chpvalz |
⊢ ( 𝑁 ∈ ℤ → ( ψ ‘ 𝑁 ) = Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 ) ) |
4 |
2 3
|
syl |
⊢ ( 𝜑 → ( ψ ‘ 𝑁 ) = Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 ) ) |
5 |
|
fveq2 |
⊢ ( 𝑥 = 𝑁 → ( ψ ‘ 𝑥 ) = ( ψ ‘ 𝑁 ) ) |
6 |
|
oveq2 |
⊢ ( 𝑥 = 𝑁 → ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) · 𝑥 ) = ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) · 𝑁 ) ) |
7 |
5 6
|
breq12d |
⊢ ( 𝑥 = 𝑁 → ( ( ψ ‘ 𝑥 ) < ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) · 𝑥 ) ↔ ( ψ ‘ 𝑁 ) < ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) · 𝑁 ) ) ) |
8 |
|
ax-ros335 |
⊢ ∀ 𝑥 ∈ ℝ+ ( ψ ‘ 𝑥 ) < ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) · 𝑥 ) |
9 |
8
|
a1i |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ( ψ ‘ 𝑥 ) < ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) · 𝑥 ) ) |
10 |
1
|
nnrpd |
⊢ ( 𝜑 → 𝑁 ∈ ℝ+ ) |
11 |
7 9 10
|
rspcdva |
⊢ ( 𝜑 → ( ψ ‘ 𝑁 ) < ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) · 𝑁 ) ) |
12 |
4 11
|
eqbrtrrd |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 ) < ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) · 𝑁 ) ) |