| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hgt750lemc.n |  |-  ( ph -> N e. NN ) | 
						
							| 2 | 1 | nnzd |  |-  ( ph -> N e. ZZ ) | 
						
							| 3 |  | chpvalz |  |-  ( N e. ZZ -> ( psi ` N ) = sum_ j e. ( 1 ... N ) ( Lam ` j ) ) | 
						
							| 4 | 2 3 | syl |  |-  ( ph -> ( psi ` N ) = sum_ j e. ( 1 ... N ) ( Lam ` j ) ) | 
						
							| 5 |  | fveq2 |  |-  ( x = N -> ( psi ` x ) = ( psi ` N ) ) | 
						
							| 6 |  | oveq2 |  |-  ( x = N -> ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. x ) = ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) | 
						
							| 7 | 5 6 | breq12d |  |-  ( x = N -> ( ( psi ` x ) < ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. x ) <-> ( psi ` N ) < ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) | 
						
							| 8 |  | ax-ros335 |  |-  A. x e. RR+ ( psi ` x ) < ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. x ) | 
						
							| 9 | 8 | a1i |  |-  ( ph -> A. x e. RR+ ( psi ` x ) < ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. x ) ) | 
						
							| 10 | 1 | nnrpd |  |-  ( ph -> N e. RR+ ) | 
						
							| 11 | 7 9 10 | rspcdva |  |-  ( ph -> ( psi ` N ) < ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) | 
						
							| 12 | 4 11 | eqbrtrrd |  |-  ( ph -> sum_ j e. ( 1 ... N ) ( Lam ` j ) < ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) |