| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hgt750lemc.n |  |-  ( ph -> N e. NN ) | 
						
							| 2 |  | hgt750lemd.0 |  |-  ( ph -> ( ; 1 0 ^ ; 2 7 ) <_ N ) | 
						
							| 3 |  | fzfid |  |-  ( ph -> ( 1 ... N ) e. Fin ) | 
						
							| 4 |  | diffi |  |-  ( ( 1 ... N ) e. Fin -> ( ( 1 ... N ) \ Prime ) e. Fin ) | 
						
							| 5 | 3 4 | syl |  |-  ( ph -> ( ( 1 ... N ) \ Prime ) e. Fin ) | 
						
							| 6 |  | vmaf |  |-  Lam : NN --> RR | 
						
							| 7 | 6 | a1i |  |-  ( ( ph /\ i e. ( ( 1 ... N ) \ Prime ) ) -> Lam : NN --> RR ) | 
						
							| 8 |  | fz1ssnn |  |-  ( 1 ... N ) C_ NN | 
						
							| 9 | 8 | a1i |  |-  ( ph -> ( 1 ... N ) C_ NN ) | 
						
							| 10 | 9 | ssdifssd |  |-  ( ph -> ( ( 1 ... N ) \ Prime ) C_ NN ) | 
						
							| 11 | 10 | sselda |  |-  ( ( ph /\ i e. ( ( 1 ... N ) \ Prime ) ) -> i e. NN ) | 
						
							| 12 | 7 11 | ffvelcdmd |  |-  ( ( ph /\ i e. ( ( 1 ... N ) \ Prime ) ) -> ( Lam ` i ) e. RR ) | 
						
							| 13 | 5 12 | fsumrecl |  |-  ( ph -> sum_ i e. ( ( 1 ... N ) \ Prime ) ( Lam ` i ) e. RR ) | 
						
							| 14 |  | 2rp |  |-  2 e. RR+ | 
						
							| 15 | 14 | a1i |  |-  ( ph -> 2 e. RR+ ) | 
						
							| 16 | 15 | relogcld |  |-  ( ph -> ( log ` 2 ) e. RR ) | 
						
							| 17 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 18 |  | 4re |  |-  4 e. RR | 
						
							| 19 |  | 2re |  |-  2 e. RR | 
						
							| 20 |  | 6re |  |-  6 e. RR | 
						
							| 21 | 20 19 | pm3.2i |  |-  ( 6 e. RR /\ 2 e. RR ) | 
						
							| 22 |  | dp2cl |  |-  ( ( 6 e. RR /\ 2 e. RR ) -> _ 6 2 e. RR ) | 
						
							| 23 | 21 22 | ax-mp |  |-  _ 6 2 e. RR | 
						
							| 24 | 19 23 | pm3.2i |  |-  ( 2 e. RR /\ _ 6 2 e. RR ) | 
						
							| 25 |  | dp2cl |  |-  ( ( 2 e. RR /\ _ 6 2 e. RR ) -> _ 2 _ 6 2 e. RR ) | 
						
							| 26 | 24 25 | ax-mp |  |-  _ 2 _ 6 2 e. RR | 
						
							| 27 | 18 26 | pm3.2i |  |-  ( 4 e. RR /\ _ 2 _ 6 2 e. RR ) | 
						
							| 28 |  | dp2cl |  |-  ( ( 4 e. RR /\ _ 2 _ 6 2 e. RR ) -> _ 4 _ 2 _ 6 2 e. RR ) | 
						
							| 29 | 27 28 | ax-mp |  |-  _ 4 _ 2 _ 6 2 e. RR | 
						
							| 30 |  | dpcl |  |-  ( ( 1 e. NN0 /\ _ 4 _ 2 _ 6 2 e. RR ) -> ( 1 . _ 4 _ 2 _ 6 2 ) e. RR ) | 
						
							| 31 | 17 29 30 | mp2an |  |-  ( 1 . _ 4 _ 2 _ 6 2 ) e. RR | 
						
							| 32 | 31 | a1i |  |-  ( ph -> ( 1 . _ 4 _ 2 _ 6 2 ) e. RR ) | 
						
							| 33 | 1 | nnred |  |-  ( ph -> N e. RR ) | 
						
							| 34 | 1 | nnrpd |  |-  ( ph -> N e. RR+ ) | 
						
							| 35 | 34 | rpge0d |  |-  ( ph -> 0 <_ N ) | 
						
							| 36 | 33 35 | resqrtcld |  |-  ( ph -> ( sqrt ` N ) e. RR ) | 
						
							| 37 | 32 36 | remulcld |  |-  ( ph -> ( ( 1 . _ 4 _ 2 _ 6 2 ) x. ( sqrt ` N ) ) e. RR ) | 
						
							| 38 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 39 |  | 0re |  |-  0 e. RR | 
						
							| 40 |  | 1re |  |-  1 e. RR | 
						
							| 41 | 39 40 | pm3.2i |  |-  ( 0 e. RR /\ 1 e. RR ) | 
						
							| 42 |  | dp2cl |  |-  ( ( 0 e. RR /\ 1 e. RR ) -> _ 0 1 e. RR ) | 
						
							| 43 | 41 42 | ax-mp |  |-  _ 0 1 e. RR | 
						
							| 44 | 39 43 | pm3.2i |  |-  ( 0 e. RR /\ _ 0 1 e. RR ) | 
						
							| 45 |  | dp2cl |  |-  ( ( 0 e. RR /\ _ 0 1 e. RR ) -> _ 0 _ 0 1 e. RR ) | 
						
							| 46 | 44 45 | ax-mp |  |-  _ 0 _ 0 1 e. RR | 
						
							| 47 | 39 46 | pm3.2i |  |-  ( 0 e. RR /\ _ 0 _ 0 1 e. RR ) | 
						
							| 48 |  | dp2cl |  |-  ( ( 0 e. RR /\ _ 0 _ 0 1 e. RR ) -> _ 0 _ 0 _ 0 1 e. RR ) | 
						
							| 49 | 47 48 | ax-mp |  |-  _ 0 _ 0 _ 0 1 e. RR | 
						
							| 50 |  | dpcl |  |-  ( ( 0 e. NN0 /\ _ 0 _ 0 _ 0 1 e. RR ) -> ( 0 . _ 0 _ 0 _ 0 1 ) e. RR ) | 
						
							| 51 | 38 49 50 | mp2an |  |-  ( 0 . _ 0 _ 0 _ 0 1 ) e. RR | 
						
							| 52 | 51 | a1i |  |-  ( ph -> ( 0 . _ 0 _ 0 _ 0 1 ) e. RR ) | 
						
							| 53 | 52 36 | remulcld |  |-  ( ph -> ( ( 0 . _ 0 _ 0 _ 0 1 ) x. ( sqrt ` N ) ) e. RR ) | 
						
							| 54 | 1 | nnzd |  |-  ( ph -> N e. ZZ ) | 
						
							| 55 |  | chpvalz |  |-  ( N e. ZZ -> ( psi ` N ) = sum_ i e. ( 1 ... N ) ( Lam ` i ) ) | 
						
							| 56 | 54 55 | syl |  |-  ( ph -> ( psi ` N ) = sum_ i e. ( 1 ... N ) ( Lam ` i ) ) | 
						
							| 57 |  | chtvalz |  |-  ( N e. ZZ -> ( theta ` N ) = sum_ i e. ( ( 1 ... N ) i^i Prime ) ( log ` i ) ) | 
						
							| 58 | 54 57 | syl |  |-  ( ph -> ( theta ` N ) = sum_ i e. ( ( 1 ... N ) i^i Prime ) ( log ` i ) ) | 
						
							| 59 |  | inss2 |  |-  ( ( 1 ... N ) i^i Prime ) C_ Prime | 
						
							| 60 | 59 | a1i |  |-  ( ph -> ( ( 1 ... N ) i^i Prime ) C_ Prime ) | 
						
							| 61 | 60 | sselda |  |-  ( ( ph /\ i e. ( ( 1 ... N ) i^i Prime ) ) -> i e. Prime ) | 
						
							| 62 |  | vmaprm |  |-  ( i e. Prime -> ( Lam ` i ) = ( log ` i ) ) | 
						
							| 63 | 61 62 | syl |  |-  ( ( ph /\ i e. ( ( 1 ... N ) i^i Prime ) ) -> ( Lam ` i ) = ( log ` i ) ) | 
						
							| 64 | 63 | sumeq2dv |  |-  ( ph -> sum_ i e. ( ( 1 ... N ) i^i Prime ) ( Lam ` i ) = sum_ i e. ( ( 1 ... N ) i^i Prime ) ( log ` i ) ) | 
						
							| 65 | 58 64 | eqtr4d |  |-  ( ph -> ( theta ` N ) = sum_ i e. ( ( 1 ... N ) i^i Prime ) ( Lam ` i ) ) | 
						
							| 66 | 56 65 | oveq12d |  |-  ( ph -> ( ( psi ` N ) - ( theta ` N ) ) = ( sum_ i e. ( 1 ... N ) ( Lam ` i ) - sum_ i e. ( ( 1 ... N ) i^i Prime ) ( Lam ` i ) ) ) | 
						
							| 67 |  | infi |  |-  ( ( 1 ... N ) e. Fin -> ( ( 1 ... N ) i^i Prime ) e. Fin ) | 
						
							| 68 | 3 67 | syl |  |-  ( ph -> ( ( 1 ... N ) i^i Prime ) e. Fin ) | 
						
							| 69 | 6 | a1i |  |-  ( ( ph /\ i e. ( ( 1 ... N ) i^i Prime ) ) -> Lam : NN --> RR ) | 
						
							| 70 |  | inss1 |  |-  ( ( 1 ... N ) i^i Prime ) C_ ( 1 ... N ) | 
						
							| 71 | 70 8 | sstri |  |-  ( ( 1 ... N ) i^i Prime ) C_ NN | 
						
							| 72 | 71 | a1i |  |-  ( ph -> ( ( 1 ... N ) i^i Prime ) C_ NN ) | 
						
							| 73 | 72 | sselda |  |-  ( ( ph /\ i e. ( ( 1 ... N ) i^i Prime ) ) -> i e. NN ) | 
						
							| 74 | 69 73 | ffvelcdmd |  |-  ( ( ph /\ i e. ( ( 1 ... N ) i^i Prime ) ) -> ( Lam ` i ) e. RR ) | 
						
							| 75 | 74 | recnd |  |-  ( ( ph /\ i e. ( ( 1 ... N ) i^i Prime ) ) -> ( Lam ` i ) e. CC ) | 
						
							| 76 | 68 75 | fsumcl |  |-  ( ph -> sum_ i e. ( ( 1 ... N ) i^i Prime ) ( Lam ` i ) e. CC ) | 
						
							| 77 | 12 | recnd |  |-  ( ( ph /\ i e. ( ( 1 ... N ) \ Prime ) ) -> ( Lam ` i ) e. CC ) | 
						
							| 78 | 5 77 | fsumcl |  |-  ( ph -> sum_ i e. ( ( 1 ... N ) \ Prime ) ( Lam ` i ) e. CC ) | 
						
							| 79 |  | inindif |  |-  ( ( ( 1 ... N ) i^i Prime ) i^i ( ( 1 ... N ) \ Prime ) ) = (/) | 
						
							| 80 | 79 | a1i |  |-  ( ph -> ( ( ( 1 ... N ) i^i Prime ) i^i ( ( 1 ... N ) \ Prime ) ) = (/) ) | 
						
							| 81 |  | inundif |  |-  ( ( ( 1 ... N ) i^i Prime ) u. ( ( 1 ... N ) \ Prime ) ) = ( 1 ... N ) | 
						
							| 82 | 81 | eqcomi |  |-  ( 1 ... N ) = ( ( ( 1 ... N ) i^i Prime ) u. ( ( 1 ... N ) \ Prime ) ) | 
						
							| 83 | 82 | a1i |  |-  ( ph -> ( 1 ... N ) = ( ( ( 1 ... N ) i^i Prime ) u. ( ( 1 ... N ) \ Prime ) ) ) | 
						
							| 84 | 6 | a1i |  |-  ( ( ph /\ i e. ( 1 ... N ) ) -> Lam : NN --> RR ) | 
						
							| 85 | 9 | sselda |  |-  ( ( ph /\ i e. ( 1 ... N ) ) -> i e. NN ) | 
						
							| 86 | 84 85 | ffvelcdmd |  |-  ( ( ph /\ i e. ( 1 ... N ) ) -> ( Lam ` i ) e. RR ) | 
						
							| 87 | 86 | recnd |  |-  ( ( ph /\ i e. ( 1 ... N ) ) -> ( Lam ` i ) e. CC ) | 
						
							| 88 | 80 83 3 87 | fsumsplit |  |-  ( ph -> sum_ i e. ( 1 ... N ) ( Lam ` i ) = ( sum_ i e. ( ( 1 ... N ) i^i Prime ) ( Lam ` i ) + sum_ i e. ( ( 1 ... N ) \ Prime ) ( Lam ` i ) ) ) | 
						
							| 89 | 76 78 88 | mvrladdd |  |-  ( ph -> ( sum_ i e. ( 1 ... N ) ( Lam ` i ) - sum_ i e. ( ( 1 ... N ) i^i Prime ) ( Lam ` i ) ) = sum_ i e. ( ( 1 ... N ) \ Prime ) ( Lam ` i ) ) | 
						
							| 90 | 66 89 | eqtr2d |  |-  ( ph -> sum_ i e. ( ( 1 ... N ) \ Prime ) ( Lam ` i ) = ( ( psi ` N ) - ( theta ` N ) ) ) | 
						
							| 91 |  | fveq2 |  |-  ( x = N -> ( psi ` x ) = ( psi ` N ) ) | 
						
							| 92 |  | fveq2 |  |-  ( x = N -> ( theta ` x ) = ( theta ` N ) ) | 
						
							| 93 | 91 92 | oveq12d |  |-  ( x = N -> ( ( psi ` x ) - ( theta ` x ) ) = ( ( psi ` N ) - ( theta ` N ) ) ) | 
						
							| 94 |  | fveq2 |  |-  ( x = N -> ( sqrt ` x ) = ( sqrt ` N ) ) | 
						
							| 95 | 94 | oveq2d |  |-  ( x = N -> ( ( 1 . _ 4 _ 2 _ 6 2 ) x. ( sqrt ` x ) ) = ( ( 1 . _ 4 _ 2 _ 6 2 ) x. ( sqrt ` N ) ) ) | 
						
							| 96 | 93 95 | breq12d |  |-  ( x = N -> ( ( ( psi ` x ) - ( theta ` x ) ) < ( ( 1 . _ 4 _ 2 _ 6 2 ) x. ( sqrt ` x ) ) <-> ( ( psi ` N ) - ( theta ` N ) ) < ( ( 1 . _ 4 _ 2 _ 6 2 ) x. ( sqrt ` N ) ) ) ) | 
						
							| 97 |  | ax-ros336 |  |-  A. x e. RR+ ( ( psi ` x ) - ( theta ` x ) ) < ( ( 1 . _ 4 _ 2 _ 6 2 ) x. ( sqrt ` x ) ) | 
						
							| 98 | 97 | a1i |  |-  ( ph -> A. x e. RR+ ( ( psi ` x ) - ( theta ` x ) ) < ( ( 1 . _ 4 _ 2 _ 6 2 ) x. ( sqrt ` x ) ) ) | 
						
							| 99 | 96 98 34 | rspcdva |  |-  ( ph -> ( ( psi ` N ) - ( theta ` N ) ) < ( ( 1 . _ 4 _ 2 _ 6 2 ) x. ( sqrt ` N ) ) ) | 
						
							| 100 | 90 99 | eqbrtrd |  |-  ( ph -> sum_ i e. ( ( 1 ... N ) \ Prime ) ( Lam ` i ) < ( ( 1 . _ 4 _ 2 _ 6 2 ) x. ( sqrt ` N ) ) ) | 
						
							| 101 | 40 | a1i |  |-  ( ph -> 1 e. RR ) | 
						
							| 102 |  | log2le1 |  |-  ( log ` 2 ) < 1 | 
						
							| 103 | 102 | a1i |  |-  ( ph -> ( log ` 2 ) < 1 ) | 
						
							| 104 |  | 10nn0 |  |-  ; 1 0 e. NN0 | 
						
							| 105 |  | 7nn0 |  |-  7 e. NN0 | 
						
							| 106 | 104 105 | nn0expcli |  |-  ( ; 1 0 ^ 7 ) e. NN0 | 
						
							| 107 | 106 | nn0rei |  |-  ( ; 1 0 ^ 7 ) e. RR | 
						
							| 108 | 107 | a1i |  |-  ( ph -> ( ; 1 0 ^ 7 ) e. RR ) | 
						
							| 109 | 52 108 | remulcld |  |-  ( ph -> ( ( 0 . _ 0 _ 0 _ 0 1 ) x. ( ; 1 0 ^ 7 ) ) e. RR ) | 
						
							| 110 | 104 | nn0rei |  |-  ; 1 0 e. RR | 
						
							| 111 |  | 0z |  |-  0 e. ZZ | 
						
							| 112 |  | 3z |  |-  3 e. ZZ | 
						
							| 113 | 110 111 112 | 3pm3.2i |  |-  ( ; 1 0 e. RR /\ 0 e. ZZ /\ 3 e. ZZ ) | 
						
							| 114 |  | 1lt10 |  |-  1 < ; 1 0 | 
						
							| 115 |  | 3pos |  |-  0 < 3 | 
						
							| 116 | 114 115 | pm3.2i |  |-  ( 1 < ; 1 0 /\ 0 < 3 ) | 
						
							| 117 |  | ltexp2a |  |-  ( ( ( ; 1 0 e. RR /\ 0 e. ZZ /\ 3 e. ZZ ) /\ ( 1 < ; 1 0 /\ 0 < 3 ) ) -> ( ; 1 0 ^ 0 ) < ( ; 1 0 ^ 3 ) ) | 
						
							| 118 | 113 116 117 | mp2an |  |-  ( ; 1 0 ^ 0 ) < ( ; 1 0 ^ 3 ) | 
						
							| 119 | 104 | numexp0 |  |-  ( ; 1 0 ^ 0 ) = 1 | 
						
							| 120 | 119 | eqcomi |  |-  1 = ( ; 1 0 ^ 0 ) | 
						
							| 121 | 110 | recni |  |-  ; 1 0 e. CC | 
						
							| 122 |  | 10pos |  |-  0 < ; 1 0 | 
						
							| 123 | 39 122 | gtneii |  |-  ; 1 0 =/= 0 | 
						
							| 124 |  | 4z |  |-  4 e. ZZ | 
						
							| 125 |  | expm1 |  |-  ( ( ; 1 0 e. CC /\ ; 1 0 =/= 0 /\ 4 e. ZZ ) -> ( ; 1 0 ^ ( 4 - 1 ) ) = ( ( ; 1 0 ^ 4 ) / ; 1 0 ) ) | 
						
							| 126 | 121 123 124 125 | mp3an |  |-  ( ; 1 0 ^ ( 4 - 1 ) ) = ( ( ; 1 0 ^ 4 ) / ; 1 0 ) | 
						
							| 127 |  | 4m1e3 |  |-  ( 4 - 1 ) = 3 | 
						
							| 128 | 127 | oveq2i |  |-  ( ; 1 0 ^ ( 4 - 1 ) ) = ( ; 1 0 ^ 3 ) | 
						
							| 129 |  | 4nn0 |  |-  4 e. NN0 | 
						
							| 130 | 104 129 | nn0expcli |  |-  ( ; 1 0 ^ 4 ) e. NN0 | 
						
							| 131 | 130 | nn0cni |  |-  ( ; 1 0 ^ 4 ) e. CC | 
						
							| 132 |  | divrec2 |  |-  ( ( ( ; 1 0 ^ 4 ) e. CC /\ ; 1 0 e. CC /\ ; 1 0 =/= 0 ) -> ( ( ; 1 0 ^ 4 ) / ; 1 0 ) = ( ( 1 / ; 1 0 ) x. ( ; 1 0 ^ 4 ) ) ) | 
						
							| 133 | 131 121 123 132 | mp3an |  |-  ( ( ; 1 0 ^ 4 ) / ; 1 0 ) = ( ( 1 / ; 1 0 ) x. ( ; 1 0 ^ 4 ) ) | 
						
							| 134 | 126 128 133 | 3eqtr3ri |  |-  ( ( 1 / ; 1 0 ) x. ( ; 1 0 ^ 4 ) ) = ( ; 1 0 ^ 3 ) | 
						
							| 135 | 118 120 134 | 3brtr4i |  |-  1 < ( ( 1 / ; 1 0 ) x. ( ; 1 0 ^ 4 ) ) | 
						
							| 136 |  | 1rp |  |-  1 e. RR+ | 
						
							| 137 | 136 | dp0h |  |-  ( 0 . 1 ) = ( 1 / ; 1 0 ) | 
						
							| 138 | 137 | oveq1i |  |-  ( ( 0 . 1 ) x. ( ; 1 0 ^ 4 ) ) = ( ( 1 / ; 1 0 ) x. ( ; 1 0 ^ 4 ) ) | 
						
							| 139 | 135 138 | breqtrri |  |-  1 < ( ( 0 . 1 ) x. ( ; 1 0 ^ 4 ) ) | 
						
							| 140 | 139 | a1i |  |-  ( ph -> 1 < ( ( 0 . 1 ) x. ( ; 1 0 ^ 4 ) ) ) | 
						
							| 141 |  | 4p1e5 |  |-  ( 4 + 1 ) = 5 | 
						
							| 142 |  | 5nn0 |  |-  5 e. NN0 | 
						
							| 143 | 142 | nn0zi |  |-  5 e. ZZ | 
						
							| 144 | 38 136 141 124 143 | dpexpp1 |  |-  ( ( 0 . 1 ) x. ( ; 1 0 ^ 4 ) ) = ( ( 0 . _ 0 1 ) x. ( ; 1 0 ^ 5 ) ) | 
						
							| 145 | 38 136 | rpdp2cl |  |-  _ 0 1 e. RR+ | 
						
							| 146 |  | 5p1e6 |  |-  ( 5 + 1 ) = 6 | 
						
							| 147 |  | 6nn0 |  |-  6 e. NN0 | 
						
							| 148 | 147 | nn0zi |  |-  6 e. ZZ | 
						
							| 149 | 38 145 146 143 148 | dpexpp1 |  |-  ( ( 0 . _ 0 1 ) x. ( ; 1 0 ^ 5 ) ) = ( ( 0 . _ 0 _ 0 1 ) x. ( ; 1 0 ^ 6 ) ) | 
						
							| 150 | 38 145 | rpdp2cl |  |-  _ 0 _ 0 1 e. RR+ | 
						
							| 151 |  | 6p1e7 |  |-  ( 6 + 1 ) = 7 | 
						
							| 152 | 105 | nn0zi |  |-  7 e. ZZ | 
						
							| 153 | 38 150 151 148 152 | dpexpp1 |  |-  ( ( 0 . _ 0 _ 0 1 ) x. ( ; 1 0 ^ 6 ) ) = ( ( 0 . _ 0 _ 0 _ 0 1 ) x. ( ; 1 0 ^ 7 ) ) | 
						
							| 154 | 144 149 153 | 3eqtrri |  |-  ( ( 0 . _ 0 _ 0 _ 0 1 ) x. ( ; 1 0 ^ 7 ) ) = ( ( 0 . 1 ) x. ( ; 1 0 ^ 4 ) ) | 
						
							| 155 | 140 154 | breqtrrdi |  |-  ( ph -> 1 < ( ( 0 . _ 0 _ 0 _ 0 1 ) x. ( ; 1 0 ^ 7 ) ) ) | 
						
							| 156 | 38 150 | rpdp2cl |  |-  _ 0 _ 0 _ 0 1 e. RR+ | 
						
							| 157 | 38 156 | rpdpcl |  |-  ( 0 . _ 0 _ 0 _ 0 1 ) e. RR+ | 
						
							| 158 | 157 | a1i |  |-  ( ph -> ( 0 . _ 0 _ 0 _ 0 1 ) e. RR+ ) | 
						
							| 159 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 160 | 159 105 | deccl |  |-  ; 2 7 e. NN0 | 
						
							| 161 | 104 160 | nn0expcli |  |-  ( ; 1 0 ^ ; 2 7 ) e. NN0 | 
						
							| 162 | 161 | nn0rei |  |-  ( ; 1 0 ^ ; 2 7 ) e. RR | 
						
							| 163 | 162 | a1i |  |-  ( ph -> ( ; 1 0 ^ ; 2 7 ) e. RR ) | 
						
							| 164 | 161 | nn0ge0i |  |-  0 <_ ( ; 1 0 ^ ; 2 7 ) | 
						
							| 165 | 164 | a1i |  |-  ( ph -> 0 <_ ( ; 1 0 ^ ; 2 7 ) ) | 
						
							| 166 | 163 165 | resqrtcld |  |-  ( ph -> ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) e. RR ) | 
						
							| 167 |  | expmul |  |-  ( ( ; 1 0 e. CC /\ 7 e. NN0 /\ 2 e. NN0 ) -> ( ; 1 0 ^ ( 7 x. 2 ) ) = ( ( ; 1 0 ^ 7 ) ^ 2 ) ) | 
						
							| 168 | 121 105 159 167 | mp3an |  |-  ( ; 1 0 ^ ( 7 x. 2 ) ) = ( ( ; 1 0 ^ 7 ) ^ 2 ) | 
						
							| 169 |  | 7t2e14 |  |-  ( 7 x. 2 ) = ; 1 4 | 
						
							| 170 | 169 | oveq2i |  |-  ( ; 1 0 ^ ( 7 x. 2 ) ) = ( ; 1 0 ^ ; 1 4 ) | 
						
							| 171 | 168 170 | eqtr3i |  |-  ( ( ; 1 0 ^ 7 ) ^ 2 ) = ( ; 1 0 ^ ; 1 4 ) | 
						
							| 172 | 171 | fveq2i |  |-  ( sqrt ` ( ( ; 1 0 ^ 7 ) ^ 2 ) ) = ( sqrt ` ( ; 1 0 ^ ; 1 4 ) ) | 
						
							| 173 |  | expgt0 |  |-  ( ( ; 1 0 e. RR /\ 7 e. ZZ /\ 0 < ; 1 0 ) -> 0 < ( ; 1 0 ^ 7 ) ) | 
						
							| 174 | 110 152 122 173 | mp3an |  |-  0 < ( ; 1 0 ^ 7 ) | 
						
							| 175 | 39 107 174 | ltleii |  |-  0 <_ ( ; 1 0 ^ 7 ) | 
						
							| 176 |  | sqrtsq |  |-  ( ( ( ; 1 0 ^ 7 ) e. RR /\ 0 <_ ( ; 1 0 ^ 7 ) ) -> ( sqrt ` ( ( ; 1 0 ^ 7 ) ^ 2 ) ) = ( ; 1 0 ^ 7 ) ) | 
						
							| 177 | 107 175 176 | mp2an |  |-  ( sqrt ` ( ( ; 1 0 ^ 7 ) ^ 2 ) ) = ( ; 1 0 ^ 7 ) | 
						
							| 178 | 172 177 | eqtr3i |  |-  ( sqrt ` ( ; 1 0 ^ ; 1 4 ) ) = ( ; 1 0 ^ 7 ) | 
						
							| 179 | 17 129 | deccl |  |-  ; 1 4 e. NN0 | 
						
							| 180 | 179 | nn0zi |  |-  ; 1 4 e. ZZ | 
						
							| 181 | 160 | nn0zi |  |-  ; 2 7 e. ZZ | 
						
							| 182 | 110 180 181 | 3pm3.2i |  |-  ( ; 1 0 e. RR /\ ; 1 4 e. ZZ /\ ; 2 7 e. ZZ ) | 
						
							| 183 |  | 4lt10 |  |-  4 < ; 1 0 | 
						
							| 184 |  | 1lt2 |  |-  1 < 2 | 
						
							| 185 | 17 159 129 105 183 184 | decltc |  |-  ; 1 4 < ; 2 7 | 
						
							| 186 | 114 185 | pm3.2i |  |-  ( 1 < ; 1 0 /\ ; 1 4 < ; 2 7 ) | 
						
							| 187 |  | ltexp2a |  |-  ( ( ( ; 1 0 e. RR /\ ; 1 4 e. ZZ /\ ; 2 7 e. ZZ ) /\ ( 1 < ; 1 0 /\ ; 1 4 < ; 2 7 ) ) -> ( ; 1 0 ^ ; 1 4 ) < ( ; 1 0 ^ ; 2 7 ) ) | 
						
							| 188 | 182 186 187 | mp2an |  |-  ( ; 1 0 ^ ; 1 4 ) < ( ; 1 0 ^ ; 2 7 ) | 
						
							| 189 | 104 179 | nn0expcli |  |-  ( ; 1 0 ^ ; 1 4 ) e. NN0 | 
						
							| 190 | 189 | nn0rei |  |-  ( ; 1 0 ^ ; 1 4 ) e. RR | 
						
							| 191 |  | expgt0 |  |-  ( ( ; 1 0 e. RR /\ ; 1 4 e. ZZ /\ 0 < ; 1 0 ) -> 0 < ( ; 1 0 ^ ; 1 4 ) ) | 
						
							| 192 | 110 180 122 191 | mp3an |  |-  0 < ( ; 1 0 ^ ; 1 4 ) | 
						
							| 193 | 39 190 192 | ltleii |  |-  0 <_ ( ; 1 0 ^ ; 1 4 ) | 
						
							| 194 | 190 193 | pm3.2i |  |-  ( ( ; 1 0 ^ ; 1 4 ) e. RR /\ 0 <_ ( ; 1 0 ^ ; 1 4 ) ) | 
						
							| 195 | 162 164 | pm3.2i |  |-  ( ( ; 1 0 ^ ; 2 7 ) e. RR /\ 0 <_ ( ; 1 0 ^ ; 2 7 ) ) | 
						
							| 196 |  | sqrtlt |  |-  ( ( ( ( ; 1 0 ^ ; 1 4 ) e. RR /\ 0 <_ ( ; 1 0 ^ ; 1 4 ) ) /\ ( ( ; 1 0 ^ ; 2 7 ) e. RR /\ 0 <_ ( ; 1 0 ^ ; 2 7 ) ) ) -> ( ( ; 1 0 ^ ; 1 4 ) < ( ; 1 0 ^ ; 2 7 ) <-> ( sqrt ` ( ; 1 0 ^ ; 1 4 ) ) < ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) ) | 
						
							| 197 | 194 195 196 | mp2an |  |-  ( ( ; 1 0 ^ ; 1 4 ) < ( ; 1 0 ^ ; 2 7 ) <-> ( sqrt ` ( ; 1 0 ^ ; 1 4 ) ) < ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) | 
						
							| 198 | 188 197 | mpbi |  |-  ( sqrt ` ( ; 1 0 ^ ; 1 4 ) ) < ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) | 
						
							| 199 | 178 198 | eqbrtrri |  |-  ( ; 1 0 ^ 7 ) < ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) | 
						
							| 200 | 199 | a1i |  |-  ( ph -> ( ; 1 0 ^ 7 ) < ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) | 
						
							| 201 | 163 165 33 35 | sqrtled |  |-  ( ph -> ( ( ; 1 0 ^ ; 2 7 ) <_ N <-> ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) <_ ( sqrt ` N ) ) ) | 
						
							| 202 | 2 201 | mpbid |  |-  ( ph -> ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) <_ ( sqrt ` N ) ) | 
						
							| 203 | 108 166 36 200 202 | ltletrd |  |-  ( ph -> ( ; 1 0 ^ 7 ) < ( sqrt ` N ) ) | 
						
							| 204 | 108 36 158 203 | ltmul2dd |  |-  ( ph -> ( ( 0 . _ 0 _ 0 _ 0 1 ) x. ( ; 1 0 ^ 7 ) ) < ( ( 0 . _ 0 _ 0 _ 0 1 ) x. ( sqrt ` N ) ) ) | 
						
							| 205 | 101 109 53 155 204 | lttrd |  |-  ( ph -> 1 < ( ( 0 . _ 0 _ 0 _ 0 1 ) x. ( sqrt ` N ) ) ) | 
						
							| 206 | 16 101 53 103 205 | lttrd |  |-  ( ph -> ( log ` 2 ) < ( ( 0 . _ 0 _ 0 _ 0 1 ) x. ( sqrt ` N ) ) ) | 
						
							| 207 | 13 16 37 53 100 206 | lt2addd |  |-  ( ph -> ( sum_ i e. ( ( 1 ... N ) \ Prime ) ( Lam ` i ) + ( log ` 2 ) ) < ( ( ( 1 . _ 4 _ 2 _ 6 2 ) x. ( sqrt ` N ) ) + ( ( 0 . _ 0 _ 0 _ 0 1 ) x. ( sqrt ` N ) ) ) ) | 
						
							| 208 |  | nfv |  |-  F/ i ph | 
						
							| 209 |  | nfcv |  |-  F/_ i ( log ` 2 ) | 
						
							| 210 |  | 2prm |  |-  2 e. Prime | 
						
							| 211 | 210 | a1i |  |-  ( ph -> 2 e. Prime ) | 
						
							| 212 |  | elndif |  |-  ( 2 e. Prime -> -. 2 e. ( ( 1 ... N ) \ Prime ) ) | 
						
							| 213 | 211 212 | syl |  |-  ( ph -> -. 2 e. ( ( 1 ... N ) \ Prime ) ) | 
						
							| 214 |  | fveq2 |  |-  ( i = 2 -> ( Lam ` i ) = ( Lam ` 2 ) ) | 
						
							| 215 |  | vmaprm |  |-  ( 2 e. Prime -> ( Lam ` 2 ) = ( log ` 2 ) ) | 
						
							| 216 | 210 215 | ax-mp |  |-  ( Lam ` 2 ) = ( log ` 2 ) | 
						
							| 217 | 214 216 | eqtrdi |  |-  ( i = 2 -> ( Lam ` i ) = ( log ` 2 ) ) | 
						
							| 218 |  | 2cnd |  |-  ( ph -> 2 e. CC ) | 
						
							| 219 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 220 | 219 | a1i |  |-  ( ph -> 2 =/= 0 ) | 
						
							| 221 | 218 220 | logcld |  |-  ( ph -> ( log ` 2 ) e. CC ) | 
						
							| 222 | 208 209 5 211 213 77 217 221 | fsumsplitsn |  |-  ( ph -> sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) = ( sum_ i e. ( ( 1 ... N ) \ Prime ) ( Lam ` i ) + ( log ` 2 ) ) ) | 
						
							| 223 | 147 14 | rpdp2cl |  |-  _ 6 2 e. RR+ | 
						
							| 224 | 159 223 | rpdp2cl |  |-  _ 2 _ 6 2 e. RR+ | 
						
							| 225 |  | 3rp |  |-  3 e. RR+ | 
						
							| 226 | 147 225 | rpdp2cl |  |-  _ 6 3 e. RR+ | 
						
							| 227 | 159 226 | rpdp2cl |  |-  _ 2 _ 6 3 e. RR+ | 
						
							| 228 |  | 1p0e1 |  |-  ( 1 + 0 ) = 1 | 
						
							| 229 |  | 4cn |  |-  4 e. CC | 
						
							| 230 | 229 | addridi |  |-  ( 4 + 0 ) = 4 | 
						
							| 231 |  | 2cn |  |-  2 e. CC | 
						
							| 232 | 231 | addridi |  |-  ( 2 + 0 ) = 2 | 
						
							| 233 |  | 3nn0 |  |-  3 e. NN0 | 
						
							| 234 |  | eqid |  |-  ; 6 2 = ; 6 2 | 
						
							| 235 |  | eqid |  |-  ; 0 1 = ; 0 1 | 
						
							| 236 |  | 6cn |  |-  6 e. CC | 
						
							| 237 | 236 | addridi |  |-  ( 6 + 0 ) = 6 | 
						
							| 238 |  | 2p1e3 |  |-  ( 2 + 1 ) = 3 | 
						
							| 239 | 147 159 38 17 234 235 237 238 | decadd |  |-  ( ; 6 2 + ; 0 1 ) = ; 6 3 | 
						
							| 240 | 147 159 38 17 147 233 239 | dpadd |  |-  ( ( 6 . 2 ) + ( 0 . 1 ) ) = ( 6 . 3 ) | 
						
							| 241 | 147 14 38 136 147 225 159 38 232 240 | dpadd2 |  |-  ( ( 2 . _ 6 2 ) + ( 0 . _ 0 1 ) ) = ( 2 . _ 6 3 ) | 
						
							| 242 | 159 223 38 145 159 226 129 38 230 241 | dpadd2 |  |-  ( ( 4 . _ 2 _ 6 2 ) + ( 0 . _ 0 _ 0 1 ) ) = ( 4 . _ 2 _ 6 3 ) | 
						
							| 243 | 129 224 38 150 129 227 17 38 228 242 | dpadd2 |  |-  ( ( 1 . _ 4 _ 2 _ 6 2 ) + ( 0 . _ 0 _ 0 _ 0 1 ) ) = ( 1 . _ 4 _ 2 _ 6 3 ) | 
						
							| 244 | 243 | oveq1i |  |-  ( ( ( 1 . _ 4 _ 2 _ 6 2 ) + ( 0 . _ 0 _ 0 _ 0 1 ) ) x. ( sqrt ` N ) ) = ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) | 
						
							| 245 | 32 | recnd |  |-  ( ph -> ( 1 . _ 4 _ 2 _ 6 2 ) e. CC ) | 
						
							| 246 | 52 | recnd |  |-  ( ph -> ( 0 . _ 0 _ 0 _ 0 1 ) e. CC ) | 
						
							| 247 | 36 | recnd |  |-  ( ph -> ( sqrt ` N ) e. CC ) | 
						
							| 248 | 245 246 247 | adddird |  |-  ( ph -> ( ( ( 1 . _ 4 _ 2 _ 6 2 ) + ( 0 . _ 0 _ 0 _ 0 1 ) ) x. ( sqrt ` N ) ) = ( ( ( 1 . _ 4 _ 2 _ 6 2 ) x. ( sqrt ` N ) ) + ( ( 0 . _ 0 _ 0 _ 0 1 ) x. ( sqrt ` N ) ) ) ) | 
						
							| 249 | 244 248 | eqtr3id |  |-  ( ph -> ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) = ( ( ( 1 . _ 4 _ 2 _ 6 2 ) x. ( sqrt ` N ) ) + ( ( 0 . _ 0 _ 0 _ 0 1 ) x. ( sqrt ` N ) ) ) ) | 
						
							| 250 | 207 222 249 | 3brtr4d |  |-  ( ph -> sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) < ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) ) |