| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hgt750lemc.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 2 |  | hgt750lemd.0 | ⊢ ( 𝜑  →  ( ; 1 0 ↑ ; 2 7 )  ≤  𝑁 ) | 
						
							| 3 |  | fzfid | ⊢ ( 𝜑  →  ( 1 ... 𝑁 )  ∈  Fin ) | 
						
							| 4 |  | diffi | ⊢ ( ( 1 ... 𝑁 )  ∈  Fin  →  ( ( 1 ... 𝑁 )  ∖  ℙ )  ∈  Fin ) | 
						
							| 5 | 3 4 | syl | ⊢ ( 𝜑  →  ( ( 1 ... 𝑁 )  ∖  ℙ )  ∈  Fin ) | 
						
							| 6 |  | vmaf | ⊢ Λ : ℕ ⟶ ℝ | 
						
							| 7 | 6 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 1 ... 𝑁 )  ∖  ℙ ) )  →  Λ : ℕ ⟶ ℝ ) | 
						
							| 8 |  | fz1ssnn | ⊢ ( 1 ... 𝑁 )  ⊆  ℕ | 
						
							| 9 | 8 | a1i | ⊢ ( 𝜑  →  ( 1 ... 𝑁 )  ⊆  ℕ ) | 
						
							| 10 | 9 | ssdifssd | ⊢ ( 𝜑  →  ( ( 1 ... 𝑁 )  ∖  ℙ )  ⊆  ℕ ) | 
						
							| 11 | 10 | sselda | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 1 ... 𝑁 )  ∖  ℙ ) )  →  𝑖  ∈  ℕ ) | 
						
							| 12 | 7 11 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 1 ... 𝑁 )  ∖  ℙ ) )  →  ( Λ ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 13 | 5 12 | fsumrecl | ⊢ ( 𝜑  →  Σ 𝑖  ∈  ( ( 1 ... 𝑁 )  ∖  ℙ ) ( Λ ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 14 |  | 2rp | ⊢ 2  ∈  ℝ+ | 
						
							| 15 | 14 | a1i | ⊢ ( 𝜑  →  2  ∈  ℝ+ ) | 
						
							| 16 | 15 | relogcld | ⊢ ( 𝜑  →  ( log ‘ 2 )  ∈  ℝ ) | 
						
							| 17 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 18 |  | 4re | ⊢ 4  ∈  ℝ | 
						
							| 19 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 20 |  | 6re | ⊢ 6  ∈  ℝ | 
						
							| 21 | 20 19 | pm3.2i | ⊢ ( 6  ∈  ℝ  ∧  2  ∈  ℝ ) | 
						
							| 22 |  | dp2cl | ⊢ ( ( 6  ∈  ℝ  ∧  2  ∈  ℝ )  →  _ 6 2  ∈  ℝ ) | 
						
							| 23 | 21 22 | ax-mp | ⊢ _ 6 2  ∈  ℝ | 
						
							| 24 | 19 23 | pm3.2i | ⊢ ( 2  ∈  ℝ  ∧  _ 6 2  ∈  ℝ ) | 
						
							| 25 |  | dp2cl | ⊢ ( ( 2  ∈  ℝ  ∧  _ 6 2  ∈  ℝ )  →  _ 2 _ 6 2  ∈  ℝ ) | 
						
							| 26 | 24 25 | ax-mp | ⊢ _ 2 _ 6 2  ∈  ℝ | 
						
							| 27 | 18 26 | pm3.2i | ⊢ ( 4  ∈  ℝ  ∧  _ 2 _ 6 2  ∈  ℝ ) | 
						
							| 28 |  | dp2cl | ⊢ ( ( 4  ∈  ℝ  ∧  _ 2 _ 6 2  ∈  ℝ )  →  _ 4 _ 2 _ 6 2  ∈  ℝ ) | 
						
							| 29 | 27 28 | ax-mp | ⊢ _ 4 _ 2 _ 6 2  ∈  ℝ | 
						
							| 30 |  | dpcl | ⊢ ( ( 1  ∈  ℕ0  ∧  _ 4 _ 2 _ 6 2  ∈  ℝ )  →  ( 1 . _ 4 _ 2 _ 6 2 )  ∈  ℝ ) | 
						
							| 31 | 17 29 30 | mp2an | ⊢ ( 1 . _ 4 _ 2 _ 6 2 )  ∈  ℝ | 
						
							| 32 | 31 | a1i | ⊢ ( 𝜑  →  ( 1 . _ 4 _ 2 _ 6 2 )  ∈  ℝ ) | 
						
							| 33 | 1 | nnred | ⊢ ( 𝜑  →  𝑁  ∈  ℝ ) | 
						
							| 34 | 1 | nnrpd | ⊢ ( 𝜑  →  𝑁  ∈  ℝ+ ) | 
						
							| 35 | 34 | rpge0d | ⊢ ( 𝜑  →  0  ≤  𝑁 ) | 
						
							| 36 | 33 35 | resqrtcld | ⊢ ( 𝜑  →  ( √ ‘ 𝑁 )  ∈  ℝ ) | 
						
							| 37 | 32 36 | remulcld | ⊢ ( 𝜑  →  ( ( 1 . _ 4 _ 2 _ 6 2 )  ·  ( √ ‘ 𝑁 ) )  ∈  ℝ ) | 
						
							| 38 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 39 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 40 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 41 | 39 40 | pm3.2i | ⊢ ( 0  ∈  ℝ  ∧  1  ∈  ℝ ) | 
						
							| 42 |  | dp2cl | ⊢ ( ( 0  ∈  ℝ  ∧  1  ∈  ℝ )  →  _ 0 1  ∈  ℝ ) | 
						
							| 43 | 41 42 | ax-mp | ⊢ _ 0 1  ∈  ℝ | 
						
							| 44 | 39 43 | pm3.2i | ⊢ ( 0  ∈  ℝ  ∧  _ 0 1  ∈  ℝ ) | 
						
							| 45 |  | dp2cl | ⊢ ( ( 0  ∈  ℝ  ∧  _ 0 1  ∈  ℝ )  →  _ 0 _ 0 1  ∈  ℝ ) | 
						
							| 46 | 44 45 | ax-mp | ⊢ _ 0 _ 0 1  ∈  ℝ | 
						
							| 47 | 39 46 | pm3.2i | ⊢ ( 0  ∈  ℝ  ∧  _ 0 _ 0 1  ∈  ℝ ) | 
						
							| 48 |  | dp2cl | ⊢ ( ( 0  ∈  ℝ  ∧  _ 0 _ 0 1  ∈  ℝ )  →  _ 0 _ 0 _ 0 1  ∈  ℝ ) | 
						
							| 49 | 47 48 | ax-mp | ⊢ _ 0 _ 0 _ 0 1  ∈  ℝ | 
						
							| 50 |  | dpcl | ⊢ ( ( 0  ∈  ℕ0  ∧  _ 0 _ 0 _ 0 1  ∈  ℝ )  →  ( 0 . _ 0 _ 0 _ 0 1 )  ∈  ℝ ) | 
						
							| 51 | 38 49 50 | mp2an | ⊢ ( 0 . _ 0 _ 0 _ 0 1 )  ∈  ℝ | 
						
							| 52 | 51 | a1i | ⊢ ( 𝜑  →  ( 0 . _ 0 _ 0 _ 0 1 )  ∈  ℝ ) | 
						
							| 53 | 52 36 | remulcld | ⊢ ( 𝜑  →  ( ( 0 . _ 0 _ 0 _ 0 1 )  ·  ( √ ‘ 𝑁 ) )  ∈  ℝ ) | 
						
							| 54 | 1 | nnzd | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 55 |  | chpvalz | ⊢ ( 𝑁  ∈  ℤ  →  ( ψ ‘ 𝑁 )  =  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( Λ ‘ 𝑖 ) ) | 
						
							| 56 | 54 55 | syl | ⊢ ( 𝜑  →  ( ψ ‘ 𝑁 )  =  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( Λ ‘ 𝑖 ) ) | 
						
							| 57 |  | chtvalz | ⊢ ( 𝑁  ∈  ℤ  →  ( θ ‘ 𝑁 )  =  Σ 𝑖  ∈  ( ( 1 ... 𝑁 )  ∩  ℙ ) ( log ‘ 𝑖 ) ) | 
						
							| 58 | 54 57 | syl | ⊢ ( 𝜑  →  ( θ ‘ 𝑁 )  =  Σ 𝑖  ∈  ( ( 1 ... 𝑁 )  ∩  ℙ ) ( log ‘ 𝑖 ) ) | 
						
							| 59 |  | inss2 | ⊢ ( ( 1 ... 𝑁 )  ∩  ℙ )  ⊆  ℙ | 
						
							| 60 | 59 | a1i | ⊢ ( 𝜑  →  ( ( 1 ... 𝑁 )  ∩  ℙ )  ⊆  ℙ ) | 
						
							| 61 | 60 | sselda | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 1 ... 𝑁 )  ∩  ℙ ) )  →  𝑖  ∈  ℙ ) | 
						
							| 62 |  | vmaprm | ⊢ ( 𝑖  ∈  ℙ  →  ( Λ ‘ 𝑖 )  =  ( log ‘ 𝑖 ) ) | 
						
							| 63 | 61 62 | syl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 1 ... 𝑁 )  ∩  ℙ ) )  →  ( Λ ‘ 𝑖 )  =  ( log ‘ 𝑖 ) ) | 
						
							| 64 | 63 | sumeq2dv | ⊢ ( 𝜑  →  Σ 𝑖  ∈  ( ( 1 ... 𝑁 )  ∩  ℙ ) ( Λ ‘ 𝑖 )  =  Σ 𝑖  ∈  ( ( 1 ... 𝑁 )  ∩  ℙ ) ( log ‘ 𝑖 ) ) | 
						
							| 65 | 58 64 | eqtr4d | ⊢ ( 𝜑  →  ( θ ‘ 𝑁 )  =  Σ 𝑖  ∈  ( ( 1 ... 𝑁 )  ∩  ℙ ) ( Λ ‘ 𝑖 ) ) | 
						
							| 66 | 56 65 | oveq12d | ⊢ ( 𝜑  →  ( ( ψ ‘ 𝑁 )  −  ( θ ‘ 𝑁 ) )  =  ( Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( Λ ‘ 𝑖 )  −  Σ 𝑖  ∈  ( ( 1 ... 𝑁 )  ∩  ℙ ) ( Λ ‘ 𝑖 ) ) ) | 
						
							| 67 |  | infi | ⊢ ( ( 1 ... 𝑁 )  ∈  Fin  →  ( ( 1 ... 𝑁 )  ∩  ℙ )  ∈  Fin ) | 
						
							| 68 | 3 67 | syl | ⊢ ( 𝜑  →  ( ( 1 ... 𝑁 )  ∩  ℙ )  ∈  Fin ) | 
						
							| 69 | 6 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 1 ... 𝑁 )  ∩  ℙ ) )  →  Λ : ℕ ⟶ ℝ ) | 
						
							| 70 |  | inss1 | ⊢ ( ( 1 ... 𝑁 )  ∩  ℙ )  ⊆  ( 1 ... 𝑁 ) | 
						
							| 71 | 70 8 | sstri | ⊢ ( ( 1 ... 𝑁 )  ∩  ℙ )  ⊆  ℕ | 
						
							| 72 | 71 | a1i | ⊢ ( 𝜑  →  ( ( 1 ... 𝑁 )  ∩  ℙ )  ⊆  ℕ ) | 
						
							| 73 | 72 | sselda | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 1 ... 𝑁 )  ∩  ℙ ) )  →  𝑖  ∈  ℕ ) | 
						
							| 74 | 69 73 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 1 ... 𝑁 )  ∩  ℙ ) )  →  ( Λ ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 75 | 74 | recnd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 1 ... 𝑁 )  ∩  ℙ ) )  →  ( Λ ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 76 | 68 75 | fsumcl | ⊢ ( 𝜑  →  Σ 𝑖  ∈  ( ( 1 ... 𝑁 )  ∩  ℙ ) ( Λ ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 77 | 12 | recnd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 1 ... 𝑁 )  ∖  ℙ ) )  →  ( Λ ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 78 | 5 77 | fsumcl | ⊢ ( 𝜑  →  Σ 𝑖  ∈  ( ( 1 ... 𝑁 )  ∖  ℙ ) ( Λ ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 79 |  | inindif | ⊢ ( ( ( 1 ... 𝑁 )  ∩  ℙ )  ∩  ( ( 1 ... 𝑁 )  ∖  ℙ ) )  =  ∅ | 
						
							| 80 | 79 | a1i | ⊢ ( 𝜑  →  ( ( ( 1 ... 𝑁 )  ∩  ℙ )  ∩  ( ( 1 ... 𝑁 )  ∖  ℙ ) )  =  ∅ ) | 
						
							| 81 |  | inundif | ⊢ ( ( ( 1 ... 𝑁 )  ∩  ℙ )  ∪  ( ( 1 ... 𝑁 )  ∖  ℙ ) )  =  ( 1 ... 𝑁 ) | 
						
							| 82 | 81 | eqcomi | ⊢ ( 1 ... 𝑁 )  =  ( ( ( 1 ... 𝑁 )  ∩  ℙ )  ∪  ( ( 1 ... 𝑁 )  ∖  ℙ ) ) | 
						
							| 83 | 82 | a1i | ⊢ ( 𝜑  →  ( 1 ... 𝑁 )  =  ( ( ( 1 ... 𝑁 )  ∩  ℙ )  ∪  ( ( 1 ... 𝑁 )  ∖  ℙ ) ) ) | 
						
							| 84 | 6 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  Λ : ℕ ⟶ ℝ ) | 
						
							| 85 | 9 | sselda | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  𝑖  ∈  ℕ ) | 
						
							| 86 | 84 85 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( Λ ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 87 | 86 | recnd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( Λ ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 88 | 80 83 3 87 | fsumsplit | ⊢ ( 𝜑  →  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( Λ ‘ 𝑖 )  =  ( Σ 𝑖  ∈  ( ( 1 ... 𝑁 )  ∩  ℙ ) ( Λ ‘ 𝑖 )  +  Σ 𝑖  ∈  ( ( 1 ... 𝑁 )  ∖  ℙ ) ( Λ ‘ 𝑖 ) ) ) | 
						
							| 89 | 76 78 88 | mvrladdd | ⊢ ( 𝜑  →  ( Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( Λ ‘ 𝑖 )  −  Σ 𝑖  ∈  ( ( 1 ... 𝑁 )  ∩  ℙ ) ( Λ ‘ 𝑖 ) )  =  Σ 𝑖  ∈  ( ( 1 ... 𝑁 )  ∖  ℙ ) ( Λ ‘ 𝑖 ) ) | 
						
							| 90 | 66 89 | eqtr2d | ⊢ ( 𝜑  →  Σ 𝑖  ∈  ( ( 1 ... 𝑁 )  ∖  ℙ ) ( Λ ‘ 𝑖 )  =  ( ( ψ ‘ 𝑁 )  −  ( θ ‘ 𝑁 ) ) ) | 
						
							| 91 |  | fveq2 | ⊢ ( 𝑥  =  𝑁  →  ( ψ ‘ 𝑥 )  =  ( ψ ‘ 𝑁 ) ) | 
						
							| 92 |  | fveq2 | ⊢ ( 𝑥  =  𝑁  →  ( θ ‘ 𝑥 )  =  ( θ ‘ 𝑁 ) ) | 
						
							| 93 | 91 92 | oveq12d | ⊢ ( 𝑥  =  𝑁  →  ( ( ψ ‘ 𝑥 )  −  ( θ ‘ 𝑥 ) )  =  ( ( ψ ‘ 𝑁 )  −  ( θ ‘ 𝑁 ) ) ) | 
						
							| 94 |  | fveq2 | ⊢ ( 𝑥  =  𝑁  →  ( √ ‘ 𝑥 )  =  ( √ ‘ 𝑁 ) ) | 
						
							| 95 | 94 | oveq2d | ⊢ ( 𝑥  =  𝑁  →  ( ( 1 . _ 4 _ 2 _ 6 2 )  ·  ( √ ‘ 𝑥 ) )  =  ( ( 1 . _ 4 _ 2 _ 6 2 )  ·  ( √ ‘ 𝑁 ) ) ) | 
						
							| 96 | 93 95 | breq12d | ⊢ ( 𝑥  =  𝑁  →  ( ( ( ψ ‘ 𝑥 )  −  ( θ ‘ 𝑥 ) )  <  ( ( 1 . _ 4 _ 2 _ 6 2 )  ·  ( √ ‘ 𝑥 ) )  ↔  ( ( ψ ‘ 𝑁 )  −  ( θ ‘ 𝑁 ) )  <  ( ( 1 . _ 4 _ 2 _ 6 2 )  ·  ( √ ‘ 𝑁 ) ) ) ) | 
						
							| 97 |  | ax-ros336 | ⊢ ∀ 𝑥  ∈  ℝ+ ( ( ψ ‘ 𝑥 )  −  ( θ ‘ 𝑥 ) )  <  ( ( 1 . _ 4 _ 2 _ 6 2 )  ·  ( √ ‘ 𝑥 ) ) | 
						
							| 98 | 97 | a1i | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ℝ+ ( ( ψ ‘ 𝑥 )  −  ( θ ‘ 𝑥 ) )  <  ( ( 1 . _ 4 _ 2 _ 6 2 )  ·  ( √ ‘ 𝑥 ) ) ) | 
						
							| 99 | 96 98 34 | rspcdva | ⊢ ( 𝜑  →  ( ( ψ ‘ 𝑁 )  −  ( θ ‘ 𝑁 ) )  <  ( ( 1 . _ 4 _ 2 _ 6 2 )  ·  ( √ ‘ 𝑁 ) ) ) | 
						
							| 100 | 90 99 | eqbrtrd | ⊢ ( 𝜑  →  Σ 𝑖  ∈  ( ( 1 ... 𝑁 )  ∖  ℙ ) ( Λ ‘ 𝑖 )  <  ( ( 1 . _ 4 _ 2 _ 6 2 )  ·  ( √ ‘ 𝑁 ) ) ) | 
						
							| 101 | 40 | a1i | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 102 |  | log2le1 | ⊢ ( log ‘ 2 )  <  1 | 
						
							| 103 | 102 | a1i | ⊢ ( 𝜑  →  ( log ‘ 2 )  <  1 ) | 
						
							| 104 |  | 10nn0 | ⊢ ; 1 0  ∈  ℕ0 | 
						
							| 105 |  | 7nn0 | ⊢ 7  ∈  ℕ0 | 
						
							| 106 | 104 105 | nn0expcli | ⊢ ( ; 1 0 ↑ 7 )  ∈  ℕ0 | 
						
							| 107 | 106 | nn0rei | ⊢ ( ; 1 0 ↑ 7 )  ∈  ℝ | 
						
							| 108 | 107 | a1i | ⊢ ( 𝜑  →  ( ; 1 0 ↑ 7 )  ∈  ℝ ) | 
						
							| 109 | 52 108 | remulcld | ⊢ ( 𝜑  →  ( ( 0 . _ 0 _ 0 _ 0 1 )  ·  ( ; 1 0 ↑ 7 ) )  ∈  ℝ ) | 
						
							| 110 | 104 | nn0rei | ⊢ ; 1 0  ∈  ℝ | 
						
							| 111 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 112 |  | 3z | ⊢ 3  ∈  ℤ | 
						
							| 113 | 110 111 112 | 3pm3.2i | ⊢ ( ; 1 0  ∈  ℝ  ∧  0  ∈  ℤ  ∧  3  ∈  ℤ ) | 
						
							| 114 |  | 1lt10 | ⊢ 1  <  ; 1 0 | 
						
							| 115 |  | 3pos | ⊢ 0  <  3 | 
						
							| 116 | 114 115 | pm3.2i | ⊢ ( 1  <  ; 1 0  ∧  0  <  3 ) | 
						
							| 117 |  | ltexp2a | ⊢ ( ( ( ; 1 0  ∈  ℝ  ∧  0  ∈  ℤ  ∧  3  ∈  ℤ )  ∧  ( 1  <  ; 1 0  ∧  0  <  3 ) )  →  ( ; 1 0 ↑ 0 )  <  ( ; 1 0 ↑ 3 ) ) | 
						
							| 118 | 113 116 117 | mp2an | ⊢ ( ; 1 0 ↑ 0 )  <  ( ; 1 0 ↑ 3 ) | 
						
							| 119 | 104 | numexp0 | ⊢ ( ; 1 0 ↑ 0 )  =  1 | 
						
							| 120 | 119 | eqcomi | ⊢ 1  =  ( ; 1 0 ↑ 0 ) | 
						
							| 121 | 110 | recni | ⊢ ; 1 0  ∈  ℂ | 
						
							| 122 |  | 10pos | ⊢ 0  <  ; 1 0 | 
						
							| 123 | 39 122 | gtneii | ⊢ ; 1 0  ≠  0 | 
						
							| 124 |  | 4z | ⊢ 4  ∈  ℤ | 
						
							| 125 |  | expm1 | ⊢ ( ( ; 1 0  ∈  ℂ  ∧  ; 1 0  ≠  0  ∧  4  ∈  ℤ )  →  ( ; 1 0 ↑ ( 4  −  1 ) )  =  ( ( ; 1 0 ↑ 4 )  /  ; 1 0 ) ) | 
						
							| 126 | 121 123 124 125 | mp3an | ⊢ ( ; 1 0 ↑ ( 4  −  1 ) )  =  ( ( ; 1 0 ↑ 4 )  /  ; 1 0 ) | 
						
							| 127 |  | 4m1e3 | ⊢ ( 4  −  1 )  =  3 | 
						
							| 128 | 127 | oveq2i | ⊢ ( ; 1 0 ↑ ( 4  −  1 ) )  =  ( ; 1 0 ↑ 3 ) | 
						
							| 129 |  | 4nn0 | ⊢ 4  ∈  ℕ0 | 
						
							| 130 | 104 129 | nn0expcli | ⊢ ( ; 1 0 ↑ 4 )  ∈  ℕ0 | 
						
							| 131 | 130 | nn0cni | ⊢ ( ; 1 0 ↑ 4 )  ∈  ℂ | 
						
							| 132 |  | divrec2 | ⊢ ( ( ( ; 1 0 ↑ 4 )  ∈  ℂ  ∧  ; 1 0  ∈  ℂ  ∧  ; 1 0  ≠  0 )  →  ( ( ; 1 0 ↑ 4 )  /  ; 1 0 )  =  ( ( 1  /  ; 1 0 )  ·  ( ; 1 0 ↑ 4 ) ) ) | 
						
							| 133 | 131 121 123 132 | mp3an | ⊢ ( ( ; 1 0 ↑ 4 )  /  ; 1 0 )  =  ( ( 1  /  ; 1 0 )  ·  ( ; 1 0 ↑ 4 ) ) | 
						
							| 134 | 126 128 133 | 3eqtr3ri | ⊢ ( ( 1  /  ; 1 0 )  ·  ( ; 1 0 ↑ 4 ) )  =  ( ; 1 0 ↑ 3 ) | 
						
							| 135 | 118 120 134 | 3brtr4i | ⊢ 1  <  ( ( 1  /  ; 1 0 )  ·  ( ; 1 0 ↑ 4 ) ) | 
						
							| 136 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 137 | 136 | dp0h | ⊢ ( 0 . 1 )  =  ( 1  /  ; 1 0 ) | 
						
							| 138 | 137 | oveq1i | ⊢ ( ( 0 . 1 )  ·  ( ; 1 0 ↑ 4 ) )  =  ( ( 1  /  ; 1 0 )  ·  ( ; 1 0 ↑ 4 ) ) | 
						
							| 139 | 135 138 | breqtrri | ⊢ 1  <  ( ( 0 . 1 )  ·  ( ; 1 0 ↑ 4 ) ) | 
						
							| 140 | 139 | a1i | ⊢ ( 𝜑  →  1  <  ( ( 0 . 1 )  ·  ( ; 1 0 ↑ 4 ) ) ) | 
						
							| 141 |  | 4p1e5 | ⊢ ( 4  +  1 )  =  5 | 
						
							| 142 |  | 5nn0 | ⊢ 5  ∈  ℕ0 | 
						
							| 143 | 142 | nn0zi | ⊢ 5  ∈  ℤ | 
						
							| 144 | 38 136 141 124 143 | dpexpp1 | ⊢ ( ( 0 . 1 )  ·  ( ; 1 0 ↑ 4 ) )  =  ( ( 0 . _ 0 1 )  ·  ( ; 1 0 ↑ 5 ) ) | 
						
							| 145 | 38 136 | rpdp2cl | ⊢ _ 0 1  ∈  ℝ+ | 
						
							| 146 |  | 5p1e6 | ⊢ ( 5  +  1 )  =  6 | 
						
							| 147 |  | 6nn0 | ⊢ 6  ∈  ℕ0 | 
						
							| 148 | 147 | nn0zi | ⊢ 6  ∈  ℤ | 
						
							| 149 | 38 145 146 143 148 | dpexpp1 | ⊢ ( ( 0 . _ 0 1 )  ·  ( ; 1 0 ↑ 5 ) )  =  ( ( 0 . _ 0 _ 0 1 )  ·  ( ; 1 0 ↑ 6 ) ) | 
						
							| 150 | 38 145 | rpdp2cl | ⊢ _ 0 _ 0 1  ∈  ℝ+ | 
						
							| 151 |  | 6p1e7 | ⊢ ( 6  +  1 )  =  7 | 
						
							| 152 | 105 | nn0zi | ⊢ 7  ∈  ℤ | 
						
							| 153 | 38 150 151 148 152 | dpexpp1 | ⊢ ( ( 0 . _ 0 _ 0 1 )  ·  ( ; 1 0 ↑ 6 ) )  =  ( ( 0 . _ 0 _ 0 _ 0 1 )  ·  ( ; 1 0 ↑ 7 ) ) | 
						
							| 154 | 144 149 153 | 3eqtrri | ⊢ ( ( 0 . _ 0 _ 0 _ 0 1 )  ·  ( ; 1 0 ↑ 7 ) )  =  ( ( 0 . 1 )  ·  ( ; 1 0 ↑ 4 ) ) | 
						
							| 155 | 140 154 | breqtrrdi | ⊢ ( 𝜑  →  1  <  ( ( 0 . _ 0 _ 0 _ 0 1 )  ·  ( ; 1 0 ↑ 7 ) ) ) | 
						
							| 156 | 38 150 | rpdp2cl | ⊢ _ 0 _ 0 _ 0 1  ∈  ℝ+ | 
						
							| 157 | 38 156 | rpdpcl | ⊢ ( 0 . _ 0 _ 0 _ 0 1 )  ∈  ℝ+ | 
						
							| 158 | 157 | a1i | ⊢ ( 𝜑  →  ( 0 . _ 0 _ 0 _ 0 1 )  ∈  ℝ+ ) | 
						
							| 159 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 160 | 159 105 | deccl | ⊢ ; 2 7  ∈  ℕ0 | 
						
							| 161 | 104 160 | nn0expcli | ⊢ ( ; 1 0 ↑ ; 2 7 )  ∈  ℕ0 | 
						
							| 162 | 161 | nn0rei | ⊢ ( ; 1 0 ↑ ; 2 7 )  ∈  ℝ | 
						
							| 163 | 162 | a1i | ⊢ ( 𝜑  →  ( ; 1 0 ↑ ; 2 7 )  ∈  ℝ ) | 
						
							| 164 | 161 | nn0ge0i | ⊢ 0  ≤  ( ; 1 0 ↑ ; 2 7 ) | 
						
							| 165 | 164 | a1i | ⊢ ( 𝜑  →  0  ≤  ( ; 1 0 ↑ ; 2 7 ) ) | 
						
							| 166 | 163 165 | resqrtcld | ⊢ ( 𝜑  →  ( √ ‘ ( ; 1 0 ↑ ; 2 7 ) )  ∈  ℝ ) | 
						
							| 167 |  | expmul | ⊢ ( ( ; 1 0  ∈  ℂ  ∧  7  ∈  ℕ0  ∧  2  ∈  ℕ0 )  →  ( ; 1 0 ↑ ( 7  ·  2 ) )  =  ( ( ; 1 0 ↑ 7 ) ↑ 2 ) ) | 
						
							| 168 | 121 105 159 167 | mp3an | ⊢ ( ; 1 0 ↑ ( 7  ·  2 ) )  =  ( ( ; 1 0 ↑ 7 ) ↑ 2 ) | 
						
							| 169 |  | 7t2e14 | ⊢ ( 7  ·  2 )  =  ; 1 4 | 
						
							| 170 | 169 | oveq2i | ⊢ ( ; 1 0 ↑ ( 7  ·  2 ) )  =  ( ; 1 0 ↑ ; 1 4 ) | 
						
							| 171 | 168 170 | eqtr3i | ⊢ ( ( ; 1 0 ↑ 7 ) ↑ 2 )  =  ( ; 1 0 ↑ ; 1 4 ) | 
						
							| 172 | 171 | fveq2i | ⊢ ( √ ‘ ( ( ; 1 0 ↑ 7 ) ↑ 2 ) )  =  ( √ ‘ ( ; 1 0 ↑ ; 1 4 ) ) | 
						
							| 173 |  | expgt0 | ⊢ ( ( ; 1 0  ∈  ℝ  ∧  7  ∈  ℤ  ∧  0  <  ; 1 0 )  →  0  <  ( ; 1 0 ↑ 7 ) ) | 
						
							| 174 | 110 152 122 173 | mp3an | ⊢ 0  <  ( ; 1 0 ↑ 7 ) | 
						
							| 175 | 39 107 174 | ltleii | ⊢ 0  ≤  ( ; 1 0 ↑ 7 ) | 
						
							| 176 |  | sqrtsq | ⊢ ( ( ( ; 1 0 ↑ 7 )  ∈  ℝ  ∧  0  ≤  ( ; 1 0 ↑ 7 ) )  →  ( √ ‘ ( ( ; 1 0 ↑ 7 ) ↑ 2 ) )  =  ( ; 1 0 ↑ 7 ) ) | 
						
							| 177 | 107 175 176 | mp2an | ⊢ ( √ ‘ ( ( ; 1 0 ↑ 7 ) ↑ 2 ) )  =  ( ; 1 0 ↑ 7 ) | 
						
							| 178 | 172 177 | eqtr3i | ⊢ ( √ ‘ ( ; 1 0 ↑ ; 1 4 ) )  =  ( ; 1 0 ↑ 7 ) | 
						
							| 179 | 17 129 | deccl | ⊢ ; 1 4  ∈  ℕ0 | 
						
							| 180 | 179 | nn0zi | ⊢ ; 1 4  ∈  ℤ | 
						
							| 181 | 160 | nn0zi | ⊢ ; 2 7  ∈  ℤ | 
						
							| 182 | 110 180 181 | 3pm3.2i | ⊢ ( ; 1 0  ∈  ℝ  ∧  ; 1 4  ∈  ℤ  ∧  ; 2 7  ∈  ℤ ) | 
						
							| 183 |  | 4lt10 | ⊢ 4  <  ; 1 0 | 
						
							| 184 |  | 1lt2 | ⊢ 1  <  2 | 
						
							| 185 | 17 159 129 105 183 184 | decltc | ⊢ ; 1 4  <  ; 2 7 | 
						
							| 186 | 114 185 | pm3.2i | ⊢ ( 1  <  ; 1 0  ∧  ; 1 4  <  ; 2 7 ) | 
						
							| 187 |  | ltexp2a | ⊢ ( ( ( ; 1 0  ∈  ℝ  ∧  ; 1 4  ∈  ℤ  ∧  ; 2 7  ∈  ℤ )  ∧  ( 1  <  ; 1 0  ∧  ; 1 4  <  ; 2 7 ) )  →  ( ; 1 0 ↑ ; 1 4 )  <  ( ; 1 0 ↑ ; 2 7 ) ) | 
						
							| 188 | 182 186 187 | mp2an | ⊢ ( ; 1 0 ↑ ; 1 4 )  <  ( ; 1 0 ↑ ; 2 7 ) | 
						
							| 189 | 104 179 | nn0expcli | ⊢ ( ; 1 0 ↑ ; 1 4 )  ∈  ℕ0 | 
						
							| 190 | 189 | nn0rei | ⊢ ( ; 1 0 ↑ ; 1 4 )  ∈  ℝ | 
						
							| 191 |  | expgt0 | ⊢ ( ( ; 1 0  ∈  ℝ  ∧  ; 1 4  ∈  ℤ  ∧  0  <  ; 1 0 )  →  0  <  ( ; 1 0 ↑ ; 1 4 ) ) | 
						
							| 192 | 110 180 122 191 | mp3an | ⊢ 0  <  ( ; 1 0 ↑ ; 1 4 ) | 
						
							| 193 | 39 190 192 | ltleii | ⊢ 0  ≤  ( ; 1 0 ↑ ; 1 4 ) | 
						
							| 194 | 190 193 | pm3.2i | ⊢ ( ( ; 1 0 ↑ ; 1 4 )  ∈  ℝ  ∧  0  ≤  ( ; 1 0 ↑ ; 1 4 ) ) | 
						
							| 195 | 162 164 | pm3.2i | ⊢ ( ( ; 1 0 ↑ ; 2 7 )  ∈  ℝ  ∧  0  ≤  ( ; 1 0 ↑ ; 2 7 ) ) | 
						
							| 196 |  | sqrtlt | ⊢ ( ( ( ( ; 1 0 ↑ ; 1 4 )  ∈  ℝ  ∧  0  ≤  ( ; 1 0 ↑ ; 1 4 ) )  ∧  ( ( ; 1 0 ↑ ; 2 7 )  ∈  ℝ  ∧  0  ≤  ( ; 1 0 ↑ ; 2 7 ) ) )  →  ( ( ; 1 0 ↑ ; 1 4 )  <  ( ; 1 0 ↑ ; 2 7 )  ↔  ( √ ‘ ( ; 1 0 ↑ ; 1 4 ) )  <  ( √ ‘ ( ; 1 0 ↑ ; 2 7 ) ) ) ) | 
						
							| 197 | 194 195 196 | mp2an | ⊢ ( ( ; 1 0 ↑ ; 1 4 )  <  ( ; 1 0 ↑ ; 2 7 )  ↔  ( √ ‘ ( ; 1 0 ↑ ; 1 4 ) )  <  ( √ ‘ ( ; 1 0 ↑ ; 2 7 ) ) ) | 
						
							| 198 | 188 197 | mpbi | ⊢ ( √ ‘ ( ; 1 0 ↑ ; 1 4 ) )  <  ( √ ‘ ( ; 1 0 ↑ ; 2 7 ) ) | 
						
							| 199 | 178 198 | eqbrtrri | ⊢ ( ; 1 0 ↑ 7 )  <  ( √ ‘ ( ; 1 0 ↑ ; 2 7 ) ) | 
						
							| 200 | 199 | a1i | ⊢ ( 𝜑  →  ( ; 1 0 ↑ 7 )  <  ( √ ‘ ( ; 1 0 ↑ ; 2 7 ) ) ) | 
						
							| 201 | 163 165 33 35 | sqrtled | ⊢ ( 𝜑  →  ( ( ; 1 0 ↑ ; 2 7 )  ≤  𝑁  ↔  ( √ ‘ ( ; 1 0 ↑ ; 2 7 ) )  ≤  ( √ ‘ 𝑁 ) ) ) | 
						
							| 202 | 2 201 | mpbid | ⊢ ( 𝜑  →  ( √ ‘ ( ; 1 0 ↑ ; 2 7 ) )  ≤  ( √ ‘ 𝑁 ) ) | 
						
							| 203 | 108 166 36 200 202 | ltletrd | ⊢ ( 𝜑  →  ( ; 1 0 ↑ 7 )  <  ( √ ‘ 𝑁 ) ) | 
						
							| 204 | 108 36 158 203 | ltmul2dd | ⊢ ( 𝜑  →  ( ( 0 . _ 0 _ 0 _ 0 1 )  ·  ( ; 1 0 ↑ 7 ) )  <  ( ( 0 . _ 0 _ 0 _ 0 1 )  ·  ( √ ‘ 𝑁 ) ) ) | 
						
							| 205 | 101 109 53 155 204 | lttrd | ⊢ ( 𝜑  →  1  <  ( ( 0 . _ 0 _ 0 _ 0 1 )  ·  ( √ ‘ 𝑁 ) ) ) | 
						
							| 206 | 16 101 53 103 205 | lttrd | ⊢ ( 𝜑  →  ( log ‘ 2 )  <  ( ( 0 . _ 0 _ 0 _ 0 1 )  ·  ( √ ‘ 𝑁 ) ) ) | 
						
							| 207 | 13 16 37 53 100 206 | lt2addd | ⊢ ( 𝜑  →  ( Σ 𝑖  ∈  ( ( 1 ... 𝑁 )  ∖  ℙ ) ( Λ ‘ 𝑖 )  +  ( log ‘ 2 ) )  <  ( ( ( 1 . _ 4 _ 2 _ 6 2 )  ·  ( √ ‘ 𝑁 ) )  +  ( ( 0 . _ 0 _ 0 _ 0 1 )  ·  ( √ ‘ 𝑁 ) ) ) ) | 
						
							| 208 |  | nfv | ⊢ Ⅎ 𝑖 𝜑 | 
						
							| 209 |  | nfcv | ⊢ Ⅎ 𝑖 ( log ‘ 2 ) | 
						
							| 210 |  | 2prm | ⊢ 2  ∈  ℙ | 
						
							| 211 | 210 | a1i | ⊢ ( 𝜑  →  2  ∈  ℙ ) | 
						
							| 212 |  | elndif | ⊢ ( 2  ∈  ℙ  →  ¬  2  ∈  ( ( 1 ... 𝑁 )  ∖  ℙ ) ) | 
						
							| 213 | 211 212 | syl | ⊢ ( 𝜑  →  ¬  2  ∈  ( ( 1 ... 𝑁 )  ∖  ℙ ) ) | 
						
							| 214 |  | fveq2 | ⊢ ( 𝑖  =  2  →  ( Λ ‘ 𝑖 )  =  ( Λ ‘ 2 ) ) | 
						
							| 215 |  | vmaprm | ⊢ ( 2  ∈  ℙ  →  ( Λ ‘ 2 )  =  ( log ‘ 2 ) ) | 
						
							| 216 | 210 215 | ax-mp | ⊢ ( Λ ‘ 2 )  =  ( log ‘ 2 ) | 
						
							| 217 | 214 216 | eqtrdi | ⊢ ( 𝑖  =  2  →  ( Λ ‘ 𝑖 )  =  ( log ‘ 2 ) ) | 
						
							| 218 |  | 2cnd | ⊢ ( 𝜑  →  2  ∈  ℂ ) | 
						
							| 219 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 220 | 219 | a1i | ⊢ ( 𝜑  →  2  ≠  0 ) | 
						
							| 221 | 218 220 | logcld | ⊢ ( 𝜑  →  ( log ‘ 2 )  ∈  ℂ ) | 
						
							| 222 | 208 209 5 211 213 77 217 221 | fsumsplitsn | ⊢ ( 𝜑  →  Σ 𝑖  ∈  ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } ) ( Λ ‘ 𝑖 )  =  ( Σ 𝑖  ∈  ( ( 1 ... 𝑁 )  ∖  ℙ ) ( Λ ‘ 𝑖 )  +  ( log ‘ 2 ) ) ) | 
						
							| 223 | 147 14 | rpdp2cl | ⊢ _ 6 2  ∈  ℝ+ | 
						
							| 224 | 159 223 | rpdp2cl | ⊢ _ 2 _ 6 2  ∈  ℝ+ | 
						
							| 225 |  | 3rp | ⊢ 3  ∈  ℝ+ | 
						
							| 226 | 147 225 | rpdp2cl | ⊢ _ 6 3  ∈  ℝ+ | 
						
							| 227 | 159 226 | rpdp2cl | ⊢ _ 2 _ 6 3  ∈  ℝ+ | 
						
							| 228 |  | 1p0e1 | ⊢ ( 1  +  0 )  =  1 | 
						
							| 229 |  | 4cn | ⊢ 4  ∈  ℂ | 
						
							| 230 | 229 | addridi | ⊢ ( 4  +  0 )  =  4 | 
						
							| 231 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 232 | 231 | addridi | ⊢ ( 2  +  0 )  =  2 | 
						
							| 233 |  | 3nn0 | ⊢ 3  ∈  ℕ0 | 
						
							| 234 |  | eqid | ⊢ ; 6 2  =  ; 6 2 | 
						
							| 235 |  | eqid | ⊢ ; 0 1  =  ; 0 1 | 
						
							| 236 |  | 6cn | ⊢ 6  ∈  ℂ | 
						
							| 237 | 236 | addridi | ⊢ ( 6  +  0 )  =  6 | 
						
							| 238 |  | 2p1e3 | ⊢ ( 2  +  1 )  =  3 | 
						
							| 239 | 147 159 38 17 234 235 237 238 | decadd | ⊢ ( ; 6 2  +  ; 0 1 )  =  ; 6 3 | 
						
							| 240 | 147 159 38 17 147 233 239 | dpadd | ⊢ ( ( 6 . 2 )  +  ( 0 . 1 ) )  =  ( 6 . 3 ) | 
						
							| 241 | 147 14 38 136 147 225 159 38 232 240 | dpadd2 | ⊢ ( ( 2 . _ 6 2 )  +  ( 0 . _ 0 1 ) )  =  ( 2 . _ 6 3 ) | 
						
							| 242 | 159 223 38 145 159 226 129 38 230 241 | dpadd2 | ⊢ ( ( 4 . _ 2 _ 6 2 )  +  ( 0 . _ 0 _ 0 1 ) )  =  ( 4 . _ 2 _ 6 3 ) | 
						
							| 243 | 129 224 38 150 129 227 17 38 228 242 | dpadd2 | ⊢ ( ( 1 . _ 4 _ 2 _ 6 2 )  +  ( 0 . _ 0 _ 0 _ 0 1 ) )  =  ( 1 . _ 4 _ 2 _ 6 3 ) | 
						
							| 244 | 243 | oveq1i | ⊢ ( ( ( 1 . _ 4 _ 2 _ 6 2 )  +  ( 0 . _ 0 _ 0 _ 0 1 ) )  ·  ( √ ‘ 𝑁 ) )  =  ( ( 1 . _ 4 _ 2 _ 6 3 )  ·  ( √ ‘ 𝑁 ) ) | 
						
							| 245 | 32 | recnd | ⊢ ( 𝜑  →  ( 1 . _ 4 _ 2 _ 6 2 )  ∈  ℂ ) | 
						
							| 246 | 52 | recnd | ⊢ ( 𝜑  →  ( 0 . _ 0 _ 0 _ 0 1 )  ∈  ℂ ) | 
						
							| 247 | 36 | recnd | ⊢ ( 𝜑  →  ( √ ‘ 𝑁 )  ∈  ℂ ) | 
						
							| 248 | 245 246 247 | adddird | ⊢ ( 𝜑  →  ( ( ( 1 . _ 4 _ 2 _ 6 2 )  +  ( 0 . _ 0 _ 0 _ 0 1 ) )  ·  ( √ ‘ 𝑁 ) )  =  ( ( ( 1 . _ 4 _ 2 _ 6 2 )  ·  ( √ ‘ 𝑁 ) )  +  ( ( 0 . _ 0 _ 0 _ 0 1 )  ·  ( √ ‘ 𝑁 ) ) ) ) | 
						
							| 249 | 244 248 | eqtr3id | ⊢ ( 𝜑  →  ( ( 1 . _ 4 _ 2 _ 6 3 )  ·  ( √ ‘ 𝑁 ) )  =  ( ( ( 1 . _ 4 _ 2 _ 6 2 )  ·  ( √ ‘ 𝑁 ) )  +  ( ( 0 . _ 0 _ 0 _ 0 1 )  ·  ( √ ‘ 𝑁 ) ) ) ) | 
						
							| 250 | 207 222 249 | 3brtr4d | ⊢ ( 𝜑  →  Σ 𝑖  ∈  ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } ) ( Λ ‘ 𝑖 )  <  ( ( 1 . _ 4 _ 2 _ 6 3 )  ·  ( √ ‘ 𝑁 ) ) ) |