Step |
Hyp |
Ref |
Expression |
1 |
|
dpadd2.a |
⊢ 𝐴 ∈ ℕ0 |
2 |
|
dpadd2.b |
⊢ 𝐵 ∈ ℝ+ |
3 |
|
dpadd2.c |
⊢ 𝐶 ∈ ℕ0 |
4 |
|
dpadd2.d |
⊢ 𝐷 ∈ ℝ+ |
5 |
|
dpadd2.e |
⊢ 𝐸 ∈ ℕ0 |
6 |
|
dpadd2.f |
⊢ 𝐹 ∈ ℝ+ |
7 |
|
dpadd2.g |
⊢ 𝐺 ∈ ℕ0 |
8 |
|
dpadd2.h |
⊢ 𝐻 ∈ ℕ0 |
9 |
|
dpadd2.i |
⊢ ( 𝐺 + 𝐻 ) = 𝐼 |
10 |
|
dpadd2.1 |
⊢ ( ( 𝐴 . 𝐵 ) + ( 𝐶 . 𝐷 ) ) = ( 𝐸 . 𝐹 ) |
11 |
1
|
nn0rei |
⊢ 𝐴 ∈ ℝ |
12 |
|
rpre |
⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ ) |
13 |
2 12
|
ax-mp |
⊢ 𝐵 ∈ ℝ |
14 |
|
dp2cl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → _ 𝐴 𝐵 ∈ ℝ ) |
15 |
11 13 14
|
mp2an |
⊢ _ 𝐴 𝐵 ∈ ℝ |
16 |
7 15
|
dpval2 |
⊢ ( 𝐺 . _ 𝐴 𝐵 ) = ( 𝐺 + ( _ 𝐴 𝐵 / ; 1 0 ) ) |
17 |
3
|
nn0rei |
⊢ 𝐶 ∈ ℝ |
18 |
|
rpre |
⊢ ( 𝐷 ∈ ℝ+ → 𝐷 ∈ ℝ ) |
19 |
4 18
|
ax-mp |
⊢ 𝐷 ∈ ℝ |
20 |
|
dp2cl |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → _ 𝐶 𝐷 ∈ ℝ ) |
21 |
17 19 20
|
mp2an |
⊢ _ 𝐶 𝐷 ∈ ℝ |
22 |
8 21
|
dpval2 |
⊢ ( 𝐻 . _ 𝐶 𝐷 ) = ( 𝐻 + ( _ 𝐶 𝐷 / ; 1 0 ) ) |
23 |
16 22
|
oveq12i |
⊢ ( ( 𝐺 . _ 𝐴 𝐵 ) + ( 𝐻 . _ 𝐶 𝐷 ) ) = ( ( 𝐺 + ( _ 𝐴 𝐵 / ; 1 0 ) ) + ( 𝐻 + ( _ 𝐶 𝐷 / ; 1 0 ) ) ) |
24 |
7
|
nn0cni |
⊢ 𝐺 ∈ ℂ |
25 |
15
|
recni |
⊢ _ 𝐴 𝐵 ∈ ℂ |
26 |
|
10nn |
⊢ ; 1 0 ∈ ℕ |
27 |
26
|
nncni |
⊢ ; 1 0 ∈ ℂ |
28 |
26
|
nnne0i |
⊢ ; 1 0 ≠ 0 |
29 |
25 27 28
|
divcli |
⊢ ( _ 𝐴 𝐵 / ; 1 0 ) ∈ ℂ |
30 |
8
|
nn0cni |
⊢ 𝐻 ∈ ℂ |
31 |
21
|
recni |
⊢ _ 𝐶 𝐷 ∈ ℂ |
32 |
31 27 28
|
divcli |
⊢ ( _ 𝐶 𝐷 / ; 1 0 ) ∈ ℂ |
33 |
24 29 30 32
|
add4i |
⊢ ( ( 𝐺 + ( _ 𝐴 𝐵 / ; 1 0 ) ) + ( 𝐻 + ( _ 𝐶 𝐷 / ; 1 0 ) ) ) = ( ( 𝐺 + 𝐻 ) + ( ( _ 𝐴 𝐵 / ; 1 0 ) + ( _ 𝐶 𝐷 / ; 1 0 ) ) ) |
34 |
25 31 27 28
|
divdiri |
⊢ ( ( _ 𝐴 𝐵 + _ 𝐶 𝐷 ) / ; 1 0 ) = ( ( _ 𝐴 𝐵 / ; 1 0 ) + ( _ 𝐶 𝐷 / ; 1 0 ) ) |
35 |
|
dpval |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ) → ( 𝐴 . 𝐵 ) = _ 𝐴 𝐵 ) |
36 |
1 13 35
|
mp2an |
⊢ ( 𝐴 . 𝐵 ) = _ 𝐴 𝐵 |
37 |
|
dpval |
⊢ ( ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℝ ) → ( 𝐶 . 𝐷 ) = _ 𝐶 𝐷 ) |
38 |
3 19 37
|
mp2an |
⊢ ( 𝐶 . 𝐷 ) = _ 𝐶 𝐷 |
39 |
36 38
|
oveq12i |
⊢ ( ( 𝐴 . 𝐵 ) + ( 𝐶 . 𝐷 ) ) = ( _ 𝐴 𝐵 + _ 𝐶 𝐷 ) |
40 |
|
rpre |
⊢ ( 𝐹 ∈ ℝ+ → 𝐹 ∈ ℝ ) |
41 |
6 40
|
ax-mp |
⊢ 𝐹 ∈ ℝ |
42 |
|
dpval |
⊢ ( ( 𝐸 ∈ ℕ0 ∧ 𝐹 ∈ ℝ ) → ( 𝐸 . 𝐹 ) = _ 𝐸 𝐹 ) |
43 |
5 41 42
|
mp2an |
⊢ ( 𝐸 . 𝐹 ) = _ 𝐸 𝐹 |
44 |
10 39 43
|
3eqtr3i |
⊢ ( _ 𝐴 𝐵 + _ 𝐶 𝐷 ) = _ 𝐸 𝐹 |
45 |
44
|
oveq1i |
⊢ ( ( _ 𝐴 𝐵 + _ 𝐶 𝐷 ) / ; 1 0 ) = ( _ 𝐸 𝐹 / ; 1 0 ) |
46 |
34 45
|
eqtr3i |
⊢ ( ( _ 𝐴 𝐵 / ; 1 0 ) + ( _ 𝐶 𝐷 / ; 1 0 ) ) = ( _ 𝐸 𝐹 / ; 1 0 ) |
47 |
9 46
|
oveq12i |
⊢ ( ( 𝐺 + 𝐻 ) + ( ( _ 𝐴 𝐵 / ; 1 0 ) + ( _ 𝐶 𝐷 / ; 1 0 ) ) ) = ( 𝐼 + ( _ 𝐸 𝐹 / ; 1 0 ) ) |
48 |
7 8
|
nn0addcli |
⊢ ( 𝐺 + 𝐻 ) ∈ ℕ0 |
49 |
9 48
|
eqeltrri |
⊢ 𝐼 ∈ ℕ0 |
50 |
5
|
nn0rei |
⊢ 𝐸 ∈ ℝ |
51 |
|
dp2cl |
⊢ ( ( 𝐸 ∈ ℝ ∧ 𝐹 ∈ ℝ ) → _ 𝐸 𝐹 ∈ ℝ ) |
52 |
50 41 51
|
mp2an |
⊢ _ 𝐸 𝐹 ∈ ℝ |
53 |
49 52
|
dpval2 |
⊢ ( 𝐼 . _ 𝐸 𝐹 ) = ( 𝐼 + ( _ 𝐸 𝐹 / ; 1 0 ) ) |
54 |
47 53
|
eqtr4i |
⊢ ( ( 𝐺 + 𝐻 ) + ( ( _ 𝐴 𝐵 / ; 1 0 ) + ( _ 𝐶 𝐷 / ; 1 0 ) ) ) = ( 𝐼 . _ 𝐸 𝐹 ) |
55 |
23 33 54
|
3eqtri |
⊢ ( ( 𝐺 . _ 𝐴 𝐵 ) + ( 𝐻 . _ 𝐶 𝐷 ) ) = ( 𝐼 . _ 𝐸 𝐹 ) |