| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dpadd2.a | ⊢ 𝐴  ∈  ℕ0 | 
						
							| 2 |  | dpadd2.b | ⊢ 𝐵  ∈  ℝ+ | 
						
							| 3 |  | dpadd2.c | ⊢ 𝐶  ∈  ℕ0 | 
						
							| 4 |  | dpadd2.d | ⊢ 𝐷  ∈  ℝ+ | 
						
							| 5 |  | dpadd2.e | ⊢ 𝐸  ∈  ℕ0 | 
						
							| 6 |  | dpadd2.f | ⊢ 𝐹  ∈  ℝ+ | 
						
							| 7 |  | dpadd2.g | ⊢ 𝐺  ∈  ℕ0 | 
						
							| 8 |  | dpadd2.h | ⊢ 𝐻  ∈  ℕ0 | 
						
							| 9 |  | dpadd2.i | ⊢ ( 𝐺  +  𝐻 )  =  𝐼 | 
						
							| 10 |  | dpadd2.1 | ⊢ ( ( 𝐴 . 𝐵 )  +  ( 𝐶 . 𝐷 ) )  =  ( 𝐸 . 𝐹 ) | 
						
							| 11 | 1 | nn0rei | ⊢ 𝐴  ∈  ℝ | 
						
							| 12 |  | rpre | ⊢ ( 𝐵  ∈  ℝ+  →  𝐵  ∈  ℝ ) | 
						
							| 13 | 2 12 | ax-mp | ⊢ 𝐵  ∈  ℝ | 
						
							| 14 |  | dp2cl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  _ 𝐴 𝐵  ∈  ℝ ) | 
						
							| 15 | 11 13 14 | mp2an | ⊢ _ 𝐴 𝐵  ∈  ℝ | 
						
							| 16 | 7 15 | dpval2 | ⊢ ( 𝐺 . _ 𝐴 𝐵 )  =  ( 𝐺  +  ( _ 𝐴 𝐵  /  ; 1 0 ) ) | 
						
							| 17 | 3 | nn0rei | ⊢ 𝐶  ∈  ℝ | 
						
							| 18 |  | rpre | ⊢ ( 𝐷  ∈  ℝ+  →  𝐷  ∈  ℝ ) | 
						
							| 19 | 4 18 | ax-mp | ⊢ 𝐷  ∈  ℝ | 
						
							| 20 |  | dp2cl | ⊢ ( ( 𝐶  ∈  ℝ  ∧  𝐷  ∈  ℝ )  →  _ 𝐶 𝐷  ∈  ℝ ) | 
						
							| 21 | 17 19 20 | mp2an | ⊢ _ 𝐶 𝐷  ∈  ℝ | 
						
							| 22 | 8 21 | dpval2 | ⊢ ( 𝐻 . _ 𝐶 𝐷 )  =  ( 𝐻  +  ( _ 𝐶 𝐷  /  ; 1 0 ) ) | 
						
							| 23 | 16 22 | oveq12i | ⊢ ( ( 𝐺 . _ 𝐴 𝐵 )  +  ( 𝐻 . _ 𝐶 𝐷 ) )  =  ( ( 𝐺  +  ( _ 𝐴 𝐵  /  ; 1 0 ) )  +  ( 𝐻  +  ( _ 𝐶 𝐷  /  ; 1 0 ) ) ) | 
						
							| 24 | 7 | nn0cni | ⊢ 𝐺  ∈  ℂ | 
						
							| 25 | 15 | recni | ⊢ _ 𝐴 𝐵  ∈  ℂ | 
						
							| 26 |  | 10nn | ⊢ ; 1 0  ∈  ℕ | 
						
							| 27 | 26 | nncni | ⊢ ; 1 0  ∈  ℂ | 
						
							| 28 | 26 | nnne0i | ⊢ ; 1 0  ≠  0 | 
						
							| 29 | 25 27 28 | divcli | ⊢ ( _ 𝐴 𝐵  /  ; 1 0 )  ∈  ℂ | 
						
							| 30 | 8 | nn0cni | ⊢ 𝐻  ∈  ℂ | 
						
							| 31 | 21 | recni | ⊢ _ 𝐶 𝐷  ∈  ℂ | 
						
							| 32 | 31 27 28 | divcli | ⊢ ( _ 𝐶 𝐷  /  ; 1 0 )  ∈  ℂ | 
						
							| 33 | 24 29 30 32 | add4i | ⊢ ( ( 𝐺  +  ( _ 𝐴 𝐵  /  ; 1 0 ) )  +  ( 𝐻  +  ( _ 𝐶 𝐷  /  ; 1 0 ) ) )  =  ( ( 𝐺  +  𝐻 )  +  ( ( _ 𝐴 𝐵  /  ; 1 0 )  +  ( _ 𝐶 𝐷  /  ; 1 0 ) ) ) | 
						
							| 34 | 25 31 27 28 | divdiri | ⊢ ( ( _ 𝐴 𝐵  +  _ 𝐶 𝐷 )  /  ; 1 0 )  =  ( ( _ 𝐴 𝐵  /  ; 1 0 )  +  ( _ 𝐶 𝐷  /  ; 1 0 ) ) | 
						
							| 35 |  | dpval | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℝ )  →  ( 𝐴 . 𝐵 )  =  _ 𝐴 𝐵 ) | 
						
							| 36 | 1 13 35 | mp2an | ⊢ ( 𝐴 . 𝐵 )  =  _ 𝐴 𝐵 | 
						
							| 37 |  | dpval | ⊢ ( ( 𝐶  ∈  ℕ0  ∧  𝐷  ∈  ℝ )  →  ( 𝐶 . 𝐷 )  =  _ 𝐶 𝐷 ) | 
						
							| 38 | 3 19 37 | mp2an | ⊢ ( 𝐶 . 𝐷 )  =  _ 𝐶 𝐷 | 
						
							| 39 | 36 38 | oveq12i | ⊢ ( ( 𝐴 . 𝐵 )  +  ( 𝐶 . 𝐷 ) )  =  ( _ 𝐴 𝐵  +  _ 𝐶 𝐷 ) | 
						
							| 40 |  | rpre | ⊢ ( 𝐹  ∈  ℝ+  →  𝐹  ∈  ℝ ) | 
						
							| 41 | 6 40 | ax-mp | ⊢ 𝐹  ∈  ℝ | 
						
							| 42 |  | dpval | ⊢ ( ( 𝐸  ∈  ℕ0  ∧  𝐹  ∈  ℝ )  →  ( 𝐸 . 𝐹 )  =  _ 𝐸 𝐹 ) | 
						
							| 43 | 5 41 42 | mp2an | ⊢ ( 𝐸 . 𝐹 )  =  _ 𝐸 𝐹 | 
						
							| 44 | 10 39 43 | 3eqtr3i | ⊢ ( _ 𝐴 𝐵  +  _ 𝐶 𝐷 )  =  _ 𝐸 𝐹 | 
						
							| 45 | 44 | oveq1i | ⊢ ( ( _ 𝐴 𝐵  +  _ 𝐶 𝐷 )  /  ; 1 0 )  =  ( _ 𝐸 𝐹  /  ; 1 0 ) | 
						
							| 46 | 34 45 | eqtr3i | ⊢ ( ( _ 𝐴 𝐵  /  ; 1 0 )  +  ( _ 𝐶 𝐷  /  ; 1 0 ) )  =  ( _ 𝐸 𝐹  /  ; 1 0 ) | 
						
							| 47 | 9 46 | oveq12i | ⊢ ( ( 𝐺  +  𝐻 )  +  ( ( _ 𝐴 𝐵  /  ; 1 0 )  +  ( _ 𝐶 𝐷  /  ; 1 0 ) ) )  =  ( 𝐼  +  ( _ 𝐸 𝐹  /  ; 1 0 ) ) | 
						
							| 48 | 7 8 | nn0addcli | ⊢ ( 𝐺  +  𝐻 )  ∈  ℕ0 | 
						
							| 49 | 9 48 | eqeltrri | ⊢ 𝐼  ∈  ℕ0 | 
						
							| 50 | 5 | nn0rei | ⊢ 𝐸  ∈  ℝ | 
						
							| 51 |  | dp2cl | ⊢ ( ( 𝐸  ∈  ℝ  ∧  𝐹  ∈  ℝ )  →  _ 𝐸 𝐹  ∈  ℝ ) | 
						
							| 52 | 50 41 51 | mp2an | ⊢ _ 𝐸 𝐹  ∈  ℝ | 
						
							| 53 | 49 52 | dpval2 | ⊢ ( 𝐼 . _ 𝐸 𝐹 )  =  ( 𝐼  +  ( _ 𝐸 𝐹  /  ; 1 0 ) ) | 
						
							| 54 | 47 53 | eqtr4i | ⊢ ( ( 𝐺  +  𝐻 )  +  ( ( _ 𝐴 𝐵  /  ; 1 0 )  +  ( _ 𝐶 𝐷  /  ; 1 0 ) ) )  =  ( 𝐼 . _ 𝐸 𝐹 ) | 
						
							| 55 | 23 33 54 | 3eqtri | ⊢ ( ( 𝐺 . _ 𝐴 𝐵 )  +  ( 𝐻 . _ 𝐶 𝐷 ) )  =  ( 𝐼 . _ 𝐸 𝐹 ) |