| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dpmul.a | ⊢ 𝐴  ∈  ℕ0 | 
						
							| 2 |  | dpmul.b | ⊢ 𝐵  ∈  ℕ0 | 
						
							| 3 |  | dpmul.c | ⊢ 𝐶  ∈  ℕ0 | 
						
							| 4 |  | dpmul.d | ⊢ 𝐷  ∈  ℕ0 | 
						
							| 5 |  | dpmul.e | ⊢ 𝐸  ∈  ℕ0 | 
						
							| 6 |  | dpadd.f | ⊢ 𝐹  ∈  ℕ0 | 
						
							| 7 |  | dpadd.1 | ⊢ ( ; 𝐴 𝐵  +  ; 𝐶 𝐷 )  =  ; 𝐸 𝐹 | 
						
							| 8 | 1 2 | deccl | ⊢ ; 𝐴 𝐵  ∈  ℕ0 | 
						
							| 9 | 8 | nn0cni | ⊢ ; 𝐴 𝐵  ∈  ℂ | 
						
							| 10 | 3 4 | deccl | ⊢ ; 𝐶 𝐷  ∈  ℕ0 | 
						
							| 11 | 10 | nn0cni | ⊢ ; 𝐶 𝐷  ∈  ℂ | 
						
							| 12 |  | 10nn | ⊢ ; 1 0  ∈  ℕ | 
						
							| 13 | 12 | nncni | ⊢ ; 1 0  ∈  ℂ | 
						
							| 14 | 12 | nnne0i | ⊢ ; 1 0  ≠  0 | 
						
							| 15 | 9 11 13 14 | divdiri | ⊢ ( ( ; 𝐴 𝐵  +  ; 𝐶 𝐷 )  /  ; 1 0 )  =  ( ( ; 𝐴 𝐵  /  ; 1 0 )  +  ( ; 𝐶 𝐷  /  ; 1 0 ) ) | 
						
							| 16 | 7 | oveq1i | ⊢ ( ( ; 𝐴 𝐵  +  ; 𝐶 𝐷 )  /  ; 1 0 )  =  ( ; 𝐸 𝐹  /  ; 1 0 ) | 
						
							| 17 | 15 16 | eqtr3i | ⊢ ( ( ; 𝐴 𝐵  /  ; 1 0 )  +  ( ; 𝐶 𝐷  /  ; 1 0 ) )  =  ( ; 𝐸 𝐹  /  ; 1 0 ) | 
						
							| 18 | 2 | nn0rei | ⊢ 𝐵  ∈  ℝ | 
						
							| 19 | 1 18 | decdiv10 | ⊢ ( ; 𝐴 𝐵  /  ; 1 0 )  =  ( 𝐴 . 𝐵 ) | 
						
							| 20 | 4 | nn0rei | ⊢ 𝐷  ∈  ℝ | 
						
							| 21 | 3 20 | decdiv10 | ⊢ ( ; 𝐶 𝐷  /  ; 1 0 )  =  ( 𝐶 . 𝐷 ) | 
						
							| 22 | 19 21 | oveq12i | ⊢ ( ( ; 𝐴 𝐵  /  ; 1 0 )  +  ( ; 𝐶 𝐷  /  ; 1 0 ) )  =  ( ( 𝐴 . 𝐵 )  +  ( 𝐶 . 𝐷 ) ) | 
						
							| 23 | 6 | nn0rei | ⊢ 𝐹  ∈  ℝ | 
						
							| 24 | 5 23 | decdiv10 | ⊢ ( ; 𝐸 𝐹  /  ; 1 0 )  =  ( 𝐸 . 𝐹 ) | 
						
							| 25 | 17 22 24 | 3eqtr3i | ⊢ ( ( 𝐴 . 𝐵 )  +  ( 𝐶 . 𝐷 ) )  =  ( 𝐸 . 𝐹 ) |