| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dpadd2.a |  |-  A e. NN0 | 
						
							| 2 |  | dpadd2.b |  |-  B e. RR+ | 
						
							| 3 |  | dpadd2.c |  |-  C e. NN0 | 
						
							| 4 |  | dpadd2.d |  |-  D e. RR+ | 
						
							| 5 |  | dpadd2.e |  |-  E e. NN0 | 
						
							| 6 |  | dpadd2.f |  |-  F e. RR+ | 
						
							| 7 |  | dpadd2.g |  |-  G e. NN0 | 
						
							| 8 |  | dpadd2.h |  |-  H e. NN0 | 
						
							| 9 |  | dpadd2.i |  |-  ( G + H ) = I | 
						
							| 10 |  | dpadd2.1 |  |-  ( ( A . B ) + ( C . D ) ) = ( E . F ) | 
						
							| 11 | 1 | nn0rei |  |-  A e. RR | 
						
							| 12 |  | rpre |  |-  ( B e. RR+ -> B e. RR ) | 
						
							| 13 | 2 12 | ax-mp |  |-  B e. RR | 
						
							| 14 |  | dp2cl |  |-  ( ( A e. RR /\ B e. RR ) -> _ A B e. RR ) | 
						
							| 15 | 11 13 14 | mp2an |  |-  _ A B e. RR | 
						
							| 16 | 7 15 | dpval2 |  |-  ( G . _ A B ) = ( G + ( _ A B / ; 1 0 ) ) | 
						
							| 17 | 3 | nn0rei |  |-  C e. RR | 
						
							| 18 |  | rpre |  |-  ( D e. RR+ -> D e. RR ) | 
						
							| 19 | 4 18 | ax-mp |  |-  D e. RR | 
						
							| 20 |  | dp2cl |  |-  ( ( C e. RR /\ D e. RR ) -> _ C D e. RR ) | 
						
							| 21 | 17 19 20 | mp2an |  |-  _ C D e. RR | 
						
							| 22 | 8 21 | dpval2 |  |-  ( H . _ C D ) = ( H + ( _ C D / ; 1 0 ) ) | 
						
							| 23 | 16 22 | oveq12i |  |-  ( ( G . _ A B ) + ( H . _ C D ) ) = ( ( G + ( _ A B / ; 1 0 ) ) + ( H + ( _ C D / ; 1 0 ) ) ) | 
						
							| 24 | 7 | nn0cni |  |-  G e. CC | 
						
							| 25 | 15 | recni |  |-  _ A B e. CC | 
						
							| 26 |  | 10nn |  |-  ; 1 0 e. NN | 
						
							| 27 | 26 | nncni |  |-  ; 1 0 e. CC | 
						
							| 28 | 26 | nnne0i |  |-  ; 1 0 =/= 0 | 
						
							| 29 | 25 27 28 | divcli |  |-  ( _ A B / ; 1 0 ) e. CC | 
						
							| 30 | 8 | nn0cni |  |-  H e. CC | 
						
							| 31 | 21 | recni |  |-  _ C D e. CC | 
						
							| 32 | 31 27 28 | divcli |  |-  ( _ C D / ; 1 0 ) e. CC | 
						
							| 33 | 24 29 30 32 | add4i |  |-  ( ( G + ( _ A B / ; 1 0 ) ) + ( H + ( _ C D / ; 1 0 ) ) ) = ( ( G + H ) + ( ( _ A B / ; 1 0 ) + ( _ C D / ; 1 0 ) ) ) | 
						
							| 34 | 25 31 27 28 | divdiri |  |-  ( ( _ A B + _ C D ) / ; 1 0 ) = ( ( _ A B / ; 1 0 ) + ( _ C D / ; 1 0 ) ) | 
						
							| 35 |  | dpval |  |-  ( ( A e. NN0 /\ B e. RR ) -> ( A . B ) = _ A B ) | 
						
							| 36 | 1 13 35 | mp2an |  |-  ( A . B ) = _ A B | 
						
							| 37 |  | dpval |  |-  ( ( C e. NN0 /\ D e. RR ) -> ( C . D ) = _ C D ) | 
						
							| 38 | 3 19 37 | mp2an |  |-  ( C . D ) = _ C D | 
						
							| 39 | 36 38 | oveq12i |  |-  ( ( A . B ) + ( C . D ) ) = ( _ A B + _ C D ) | 
						
							| 40 |  | rpre |  |-  ( F e. RR+ -> F e. RR ) | 
						
							| 41 | 6 40 | ax-mp |  |-  F e. RR | 
						
							| 42 |  | dpval |  |-  ( ( E e. NN0 /\ F e. RR ) -> ( E . F ) = _ E F ) | 
						
							| 43 | 5 41 42 | mp2an |  |-  ( E . F ) = _ E F | 
						
							| 44 | 10 39 43 | 3eqtr3i |  |-  ( _ A B + _ C D ) = _ E F | 
						
							| 45 | 44 | oveq1i |  |-  ( ( _ A B + _ C D ) / ; 1 0 ) = ( _ E F / ; 1 0 ) | 
						
							| 46 | 34 45 | eqtr3i |  |-  ( ( _ A B / ; 1 0 ) + ( _ C D / ; 1 0 ) ) = ( _ E F / ; 1 0 ) | 
						
							| 47 | 9 46 | oveq12i |  |-  ( ( G + H ) + ( ( _ A B / ; 1 0 ) + ( _ C D / ; 1 0 ) ) ) = ( I + ( _ E F / ; 1 0 ) ) | 
						
							| 48 | 7 8 | nn0addcli |  |-  ( G + H ) e. NN0 | 
						
							| 49 | 9 48 | eqeltrri |  |-  I e. NN0 | 
						
							| 50 | 5 | nn0rei |  |-  E e. RR | 
						
							| 51 |  | dp2cl |  |-  ( ( E e. RR /\ F e. RR ) -> _ E F e. RR ) | 
						
							| 52 | 50 41 51 | mp2an |  |-  _ E F e. RR | 
						
							| 53 | 49 52 | dpval2 |  |-  ( I . _ E F ) = ( I + ( _ E F / ; 1 0 ) ) | 
						
							| 54 | 47 53 | eqtr4i |  |-  ( ( G + H ) + ( ( _ A B / ; 1 0 ) + ( _ C D / ; 1 0 ) ) ) = ( I . _ E F ) | 
						
							| 55 | 23 33 54 | 3eqtri |  |-  ( ( G . _ A B ) + ( H . _ C D ) ) = ( I . _ E F ) |