Description: log 2 is less than 1 . This is just a weaker form of log2ub when no tight upper bound is required. (Contributed by Thierry Arnoux, 27-Sep-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | log2le1 | ⊢ ( log ‘ 2 ) < 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | log2ub | ⊢ ( log ‘ 2 ) < ( ; ; 2 5 3 / ; ; 3 6 5 ) | |
| 2 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 3 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
| 4 | 5nn0 | ⊢ 5 ∈ ℕ0 | |
| 5 | 6nn0 | ⊢ 6 ∈ ℕ0 | |
| 6 | 2lt3 | ⊢ 2 < 3 | |
| 7 | 5lt10 | ⊢ 5 < ; 1 0 | |
| 8 | 3lt10 | ⊢ 3 < ; 1 0 | |
| 9 | 2 3 4 5 3 4 6 7 8 | 3decltc | ⊢ ; ; 2 5 3 < ; ; 3 6 5 |
| 10 | 2 4 | deccl | ⊢ ; 2 5 ∈ ℕ0 |
| 11 | 10 3 | deccl | ⊢ ; ; 2 5 3 ∈ ℕ0 |
| 12 | 11 | nn0rei | ⊢ ; ; 2 5 3 ∈ ℝ |
| 13 | 3 5 | deccl | ⊢ ; 3 6 ∈ ℕ0 |
| 14 | 13 4 | deccl | ⊢ ; ; 3 6 5 ∈ ℕ0 |
| 15 | 14 | nn0rei | ⊢ ; ; 3 6 5 ∈ ℝ |
| 16 | 6nn | ⊢ 6 ∈ ℕ | |
| 17 | 3 16 | decnncl | ⊢ ; 3 6 ∈ ℕ |
| 18 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 19 | 10pos | ⊢ 0 < ; 1 0 | |
| 20 | 17 4 18 19 | declti | ⊢ 0 < ; ; 3 6 5 |
| 21 | 12 15 15 20 | ltdiv1ii | ⊢ ( ; ; 2 5 3 < ; ; 3 6 5 ↔ ( ; ; 2 5 3 / ; ; 3 6 5 ) < ( ; ; 3 6 5 / ; ; 3 6 5 ) ) |
| 22 | 9 21 | mpbi | ⊢ ( ; ; 2 5 3 / ; ; 3 6 5 ) < ( ; ; 3 6 5 / ; ; 3 6 5 ) |
| 23 | 15 | recni | ⊢ ; ; 3 6 5 ∈ ℂ |
| 24 | 0re | ⊢ 0 ∈ ℝ | |
| 25 | 24 20 | gtneii | ⊢ ; ; 3 6 5 ≠ 0 |
| 26 | 23 25 | dividi | ⊢ ( ; ; 3 6 5 / ; ; 3 6 5 ) = 1 |
| 27 | 22 26 | breqtri | ⊢ ( ; ; 2 5 3 / ; ; 3 6 5 ) < 1 |
| 28 | 2rp | ⊢ 2 ∈ ℝ+ | |
| 29 | relogcl | ⊢ ( 2 ∈ ℝ+ → ( log ‘ 2 ) ∈ ℝ ) | |
| 30 | 28 29 | ax-mp | ⊢ ( log ‘ 2 ) ∈ ℝ |
| 31 | 12 15 25 | redivcli | ⊢ ( ; ; 2 5 3 / ; ; 3 6 5 ) ∈ ℝ |
| 32 | 1re | ⊢ 1 ∈ ℝ | |
| 33 | 30 31 32 | lttri | ⊢ ( ( ( log ‘ 2 ) < ( ; ; 2 5 3 / ; ; 3 6 5 ) ∧ ( ; ; 2 5 3 / ; ; 3 6 5 ) < 1 ) → ( log ‘ 2 ) < 1 ) |
| 34 | 1 27 33 | mp2an | ⊢ ( log ‘ 2 ) < 1 |