Step |
Hyp |
Ref |
Expression |
1 |
|
4m1e3 |
⊢ ( 4 − 1 ) = 3 |
2 |
1
|
oveq2i |
⊢ ( 0 ... ( 4 − 1 ) ) = ( 0 ... 3 ) |
3 |
2
|
sumeq1i |
⊢ Σ 𝑛 ∈ ( 0 ... ( 4 − 1 ) ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) = Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) |
4 |
3
|
oveq2i |
⊢ ( ( log ‘ 2 ) − Σ 𝑛 ∈ ( 0 ... ( 4 − 1 ) ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ) = ( ( log ‘ 2 ) − Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ) |
5 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
6 |
|
log2tlbnd |
⊢ ( 4 ∈ ℕ0 → ( ( log ‘ 2 ) − Σ 𝑛 ∈ ( 0 ... ( 4 − 1 ) ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ) ∈ ( 0 [,] ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) ) ) |
7 |
5 6
|
ax-mp |
⊢ ( ( log ‘ 2 ) − Σ 𝑛 ∈ ( 0 ... ( 4 − 1 ) ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ) ∈ ( 0 [,] ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) ) |
8 |
4 7
|
eqeltrri |
⊢ ( ( log ‘ 2 ) − Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ) ∈ ( 0 [,] ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) ) |
9 |
|
0re |
⊢ 0 ∈ ℝ |
10 |
|
3re |
⊢ 3 ∈ ℝ |
11 |
|
4nn |
⊢ 4 ∈ ℕ |
12 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
13 |
|
1nn |
⊢ 1 ∈ ℕ |
14 |
12 5 13
|
numnncl |
⊢ ( ( 2 · 4 ) + 1 ) ∈ ℕ |
15 |
11 14
|
nnmulcli |
⊢ ( 4 · ( ( 2 · 4 ) + 1 ) ) ∈ ℕ |
16 |
|
9nn |
⊢ 9 ∈ ℕ |
17 |
|
nnexpcl |
⊢ ( ( 9 ∈ ℕ ∧ 4 ∈ ℕ0 ) → ( 9 ↑ 4 ) ∈ ℕ ) |
18 |
16 5 17
|
mp2an |
⊢ ( 9 ↑ 4 ) ∈ ℕ |
19 |
15 18
|
nnmulcli |
⊢ ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ∈ ℕ |
20 |
|
nndivre |
⊢ ( ( 3 ∈ ℝ ∧ ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ∈ ℕ ) → ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) ∈ ℝ ) |
21 |
10 19 20
|
mp2an |
⊢ ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) ∈ ℝ |
22 |
9 21
|
elicc2i |
⊢ ( ( ( log ‘ 2 ) − Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ) ∈ ( 0 [,] ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) ) ↔ ( ( ( log ‘ 2 ) − Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ) ∈ ℝ ∧ 0 ≤ ( ( log ‘ 2 ) − Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ) ∧ ( ( log ‘ 2 ) − Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ) ≤ ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) ) ) |
23 |
8 22
|
mpbi |
⊢ ( ( ( log ‘ 2 ) − Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ) ∈ ℝ ∧ 0 ≤ ( ( log ‘ 2 ) − Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ) ∧ ( ( log ‘ 2 ) − Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ) ≤ ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) ) |
24 |
23
|
simp3i |
⊢ ( ( log ‘ 2 ) − Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ) ≤ ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) |
25 |
|
2rp |
⊢ 2 ∈ ℝ+ |
26 |
|
relogcl |
⊢ ( 2 ∈ ℝ+ → ( log ‘ 2 ) ∈ ℝ ) |
27 |
25 26
|
ax-mp |
⊢ ( log ‘ 2 ) ∈ ℝ |
28 |
|
fzfid |
⊢ ( ⊤ → ( 0 ... 3 ) ∈ Fin ) |
29 |
|
2re |
⊢ 2 ∈ ℝ |
30 |
|
3nn |
⊢ 3 ∈ ℕ |
31 |
|
elfznn0 |
⊢ ( 𝑛 ∈ ( 0 ... 3 ) → 𝑛 ∈ ℕ0 ) |
32 |
31
|
adantl |
⊢ ( ( ⊤ ∧ 𝑛 ∈ ( 0 ... 3 ) ) → 𝑛 ∈ ℕ0 ) |
33 |
|
nn0mulcl |
⊢ ( ( 2 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) → ( 2 · 𝑛 ) ∈ ℕ0 ) |
34 |
12 32 33
|
sylancr |
⊢ ( ( ⊤ ∧ 𝑛 ∈ ( 0 ... 3 ) ) → ( 2 · 𝑛 ) ∈ ℕ0 ) |
35 |
|
nn0p1nn |
⊢ ( ( 2 · 𝑛 ) ∈ ℕ0 → ( ( 2 · 𝑛 ) + 1 ) ∈ ℕ ) |
36 |
34 35
|
syl |
⊢ ( ( ⊤ ∧ 𝑛 ∈ ( 0 ... 3 ) ) → ( ( 2 · 𝑛 ) + 1 ) ∈ ℕ ) |
37 |
|
nnmulcl |
⊢ ( ( 3 ∈ ℕ ∧ ( ( 2 · 𝑛 ) + 1 ) ∈ ℕ ) → ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℕ ) |
38 |
30 36 37
|
sylancr |
⊢ ( ( ⊤ ∧ 𝑛 ∈ ( 0 ... 3 ) ) → ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℕ ) |
39 |
|
nnexpcl |
⊢ ( ( 9 ∈ ℕ ∧ 𝑛 ∈ ℕ0 ) → ( 9 ↑ 𝑛 ) ∈ ℕ ) |
40 |
16 32 39
|
sylancr |
⊢ ( ( ⊤ ∧ 𝑛 ∈ ( 0 ... 3 ) ) → ( 9 ↑ 𝑛 ) ∈ ℕ ) |
41 |
38 40
|
nnmulcld |
⊢ ( ( ⊤ ∧ 𝑛 ∈ ( 0 ... 3 ) ) → ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ∈ ℕ ) |
42 |
|
nndivre |
⊢ ( ( 2 ∈ ℝ ∧ ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ∈ ℕ ) → ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ∈ ℝ ) |
43 |
29 41 42
|
sylancr |
⊢ ( ( ⊤ ∧ 𝑛 ∈ ( 0 ... 3 ) ) → ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ∈ ℝ ) |
44 |
28 43
|
fsumrecl |
⊢ ( ⊤ → Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ∈ ℝ ) |
45 |
44
|
mptru |
⊢ Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ∈ ℝ |
46 |
27 45 21
|
lesubadd2i |
⊢ ( ( ( log ‘ 2 ) − Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ) ≤ ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) ↔ ( log ‘ 2 ) ≤ ( Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) + ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) ) ) |
47 |
24 46
|
mpbi |
⊢ ( log ‘ 2 ) ≤ ( Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) + ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) ) |
48 |
|
log2ublem3 |
⊢ ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ) ≤ ; ; ; ; 5 3 0 5 6 |
49 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
50 |
|
5nn0 |
⊢ 5 ∈ ℕ0 |
51 |
50 49
|
deccl |
⊢ ; 5 3 ∈ ℕ0 |
52 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
53 |
51 52
|
deccl |
⊢ ; ; 5 3 0 ∈ ℕ0 |
54 |
53 50
|
deccl |
⊢ ; ; ; 5 3 0 5 ∈ ℕ0 |
55 |
|
6nn0 |
⊢ 6 ∈ ℕ0 |
56 |
54 55
|
deccl |
⊢ ; ; ; ; 5 3 0 5 6 ∈ ℕ0 |
57 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
58 |
|
eqid |
⊢ ( Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) + ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) ) = ( Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) + ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) ) |
59 |
|
6p1e7 |
⊢ ( 6 + 1 ) = 7 |
60 |
|
eqid |
⊢ ; ; ; ; 5 3 0 5 6 = ; ; ; ; 5 3 0 5 6 |
61 |
54 55 59 60
|
decsuc |
⊢ ( ; ; ; ; 5 3 0 5 6 + 1 ) = ; ; ; ; 5 3 0 5 7 |
62 |
|
5nn |
⊢ 5 ∈ ℕ |
63 |
|
7nn |
⊢ 7 ∈ ℕ |
64 |
62 63
|
nnmulcli |
⊢ ( 5 · 7 ) ∈ ℕ |
65 |
64
|
nnrei |
⊢ ( 5 · 7 ) ∈ ℝ |
66 |
15
|
nnrei |
⊢ ( 4 · ( ( 2 · 4 ) + 1 ) ) ∈ ℝ |
67 |
|
6nn |
⊢ 6 ∈ ℕ |
68 |
|
5lt6 |
⊢ 5 < 6 |
69 |
49 50 67 68
|
declt |
⊢ ; 3 5 < ; 3 6 |
70 |
|
7cn |
⊢ 7 ∈ ℂ |
71 |
|
5cn |
⊢ 5 ∈ ℂ |
72 |
|
7t5e35 |
⊢ ( 7 · 5 ) = ; 3 5 |
73 |
70 71 72
|
mulcomli |
⊢ ( 5 · 7 ) = ; 3 5 |
74 |
|
4cn |
⊢ 4 ∈ ℂ |
75 |
|
2cn |
⊢ 2 ∈ ℂ |
76 |
|
4t2e8 |
⊢ ( 4 · 2 ) = 8 |
77 |
74 75 76
|
mulcomli |
⊢ ( 2 · 4 ) = 8 |
78 |
77
|
oveq1i |
⊢ ( ( 2 · 4 ) + 1 ) = ( 8 + 1 ) |
79 |
|
8p1e9 |
⊢ ( 8 + 1 ) = 9 |
80 |
78 79
|
eqtri |
⊢ ( ( 2 · 4 ) + 1 ) = 9 |
81 |
80
|
oveq2i |
⊢ ( 4 · ( ( 2 · 4 ) + 1 ) ) = ( 4 · 9 ) |
82 |
|
9cn |
⊢ 9 ∈ ℂ |
83 |
|
9t4e36 |
⊢ ( 9 · 4 ) = ; 3 6 |
84 |
82 74 83
|
mulcomli |
⊢ ( 4 · 9 ) = ; 3 6 |
85 |
81 84
|
eqtri |
⊢ ( 4 · ( ( 2 · 4 ) + 1 ) ) = ; 3 6 |
86 |
69 73 85
|
3brtr4i |
⊢ ( 5 · 7 ) < ( 4 · ( ( 2 · 4 ) + 1 ) ) |
87 |
65 66 86
|
ltleii |
⊢ ( 5 · 7 ) ≤ ( 4 · ( ( 2 · 4 ) + 1 ) ) |
88 |
18
|
nngt0i |
⊢ 0 < ( 9 ↑ 4 ) |
89 |
18
|
nnrei |
⊢ ( 9 ↑ 4 ) ∈ ℝ |
90 |
65 66 89
|
lemul2i |
⊢ ( 0 < ( 9 ↑ 4 ) → ( ( 5 · 7 ) ≤ ( 4 · ( ( 2 · 4 ) + 1 ) ) ↔ ( ( 9 ↑ 4 ) · ( 5 · 7 ) ) ≤ ( ( 9 ↑ 4 ) · ( 4 · ( ( 2 · 4 ) + 1 ) ) ) ) ) |
91 |
88 90
|
ax-mp |
⊢ ( ( 5 · 7 ) ≤ ( 4 · ( ( 2 · 4 ) + 1 ) ) ↔ ( ( 9 ↑ 4 ) · ( 5 · 7 ) ) ≤ ( ( 9 ↑ 4 ) · ( 4 · ( ( 2 · 4 ) + 1 ) ) ) ) |
92 |
87 91
|
mpbi |
⊢ ( ( 9 ↑ 4 ) · ( 5 · 7 ) ) ≤ ( ( 9 ↑ 4 ) · ( 4 · ( ( 2 · 4 ) + 1 ) ) ) |
93 |
|
7nn0 |
⊢ 7 ∈ ℕ0 |
94 |
|
nnexpcl |
⊢ ( ( 3 ∈ ℕ ∧ 7 ∈ ℕ0 ) → ( 3 ↑ 7 ) ∈ ℕ ) |
95 |
30 93 94
|
mp2an |
⊢ ( 3 ↑ 7 ) ∈ ℕ |
96 |
95
|
nncni |
⊢ ( 3 ↑ 7 ) ∈ ℂ |
97 |
64
|
nncni |
⊢ ( 5 · 7 ) ∈ ℂ |
98 |
|
3cn |
⊢ 3 ∈ ℂ |
99 |
96 97 98
|
mul32i |
⊢ ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · 3 ) = ( ( ( 3 ↑ 7 ) · 3 ) · ( 5 · 7 ) ) |
100 |
74 75
|
mulcomi |
⊢ ( 4 · 2 ) = ( 2 · 4 ) |
101 |
|
df-8 |
⊢ 8 = ( 7 + 1 ) |
102 |
76 100 101
|
3eqtr3i |
⊢ ( 2 · 4 ) = ( 7 + 1 ) |
103 |
102
|
oveq2i |
⊢ ( 3 ↑ ( 2 · 4 ) ) = ( 3 ↑ ( 7 + 1 ) ) |
104 |
|
expmul |
⊢ ( ( 3 ∈ ℂ ∧ 2 ∈ ℕ0 ∧ 4 ∈ ℕ0 ) → ( 3 ↑ ( 2 · 4 ) ) = ( ( 3 ↑ 2 ) ↑ 4 ) ) |
105 |
98 12 5 104
|
mp3an |
⊢ ( 3 ↑ ( 2 · 4 ) ) = ( ( 3 ↑ 2 ) ↑ 4 ) |
106 |
103 105
|
eqtr3i |
⊢ ( 3 ↑ ( 7 + 1 ) ) = ( ( 3 ↑ 2 ) ↑ 4 ) |
107 |
|
expp1 |
⊢ ( ( 3 ∈ ℂ ∧ 7 ∈ ℕ0 ) → ( 3 ↑ ( 7 + 1 ) ) = ( ( 3 ↑ 7 ) · 3 ) ) |
108 |
98 93 107
|
mp2an |
⊢ ( 3 ↑ ( 7 + 1 ) ) = ( ( 3 ↑ 7 ) · 3 ) |
109 |
|
sq3 |
⊢ ( 3 ↑ 2 ) = 9 |
110 |
109
|
oveq1i |
⊢ ( ( 3 ↑ 2 ) ↑ 4 ) = ( 9 ↑ 4 ) |
111 |
106 108 110
|
3eqtr3i |
⊢ ( ( 3 ↑ 7 ) · 3 ) = ( 9 ↑ 4 ) |
112 |
111
|
oveq1i |
⊢ ( ( ( 3 ↑ 7 ) · 3 ) · ( 5 · 7 ) ) = ( ( 9 ↑ 4 ) · ( 5 · 7 ) ) |
113 |
99 112
|
eqtri |
⊢ ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · 3 ) = ( ( 9 ↑ 4 ) · ( 5 · 7 ) ) |
114 |
15
|
nncni |
⊢ ( 4 · ( ( 2 · 4 ) + 1 ) ) ∈ ℂ |
115 |
18
|
nncni |
⊢ ( 9 ↑ 4 ) ∈ ℂ |
116 |
114 115
|
mulcomi |
⊢ ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) = ( ( 9 ↑ 4 ) · ( 4 · ( ( 2 · 4 ) + 1 ) ) ) |
117 |
116
|
oveq1i |
⊢ ( ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) · 1 ) = ( ( ( 9 ↑ 4 ) · ( 4 · ( ( 2 · 4 ) + 1 ) ) ) · 1 ) |
118 |
115 114
|
mulcli |
⊢ ( ( 9 ↑ 4 ) · ( 4 · ( ( 2 · 4 ) + 1 ) ) ) ∈ ℂ |
119 |
118
|
mulid1i |
⊢ ( ( ( 9 ↑ 4 ) · ( 4 · ( ( 2 · 4 ) + 1 ) ) ) · 1 ) = ( ( 9 ↑ 4 ) · ( 4 · ( ( 2 · 4 ) + 1 ) ) ) |
120 |
117 119
|
eqtri |
⊢ ( ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) · 1 ) = ( ( 9 ↑ 4 ) · ( 4 · ( ( 2 · 4 ) + 1 ) ) ) |
121 |
92 113 120
|
3brtr4i |
⊢ ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · 3 ) ≤ ( ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) · 1 ) |
122 |
48 45 49 19 56 57 58 61 121
|
log2ublem1 |
⊢ ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · ( Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) + ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) ) ) ≤ ; ; ; ; 5 3 0 5 7 |
123 |
45 21
|
readdcli |
⊢ ( Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) + ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) ) ∈ ℝ |
124 |
54 93
|
deccl |
⊢ ; ; ; ; 5 3 0 5 7 ∈ ℕ0 |
125 |
124
|
nn0rei |
⊢ ; ; ; ; 5 3 0 5 7 ∈ ℝ |
126 |
95 64
|
nnmulcli |
⊢ ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ∈ ℕ |
127 |
126
|
nnrei |
⊢ ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ∈ ℝ |
128 |
126
|
nngt0i |
⊢ 0 < ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) |
129 |
127 128
|
pm3.2i |
⊢ ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ∈ ℝ ∧ 0 < ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ) |
130 |
|
lemuldiv2 |
⊢ ( ( ( Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) + ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) ) ∈ ℝ ∧ ; ; ; ; 5 3 0 5 7 ∈ ℝ ∧ ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ∈ ℝ ∧ 0 < ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ) ) → ( ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · ( Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) + ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) ) ) ≤ ; ; ; ; 5 3 0 5 7 ↔ ( Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) + ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) ) ≤ ( ; ; ; ; 5 3 0 5 7 / ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ) ) ) |
131 |
123 125 129 130
|
mp3an |
⊢ ( ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · ( Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) + ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) ) ) ≤ ; ; ; ; 5 3 0 5 7 ↔ ( Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) + ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) ) ≤ ( ; ; ; ; 5 3 0 5 7 / ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ) ) |
132 |
122 131
|
mpbi |
⊢ ( Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) + ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) ) ≤ ( ; ; ; ; 5 3 0 5 7 / ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ) |
133 |
|
8nn0 |
⊢ 8 ∈ ℕ0 |
134 |
49 133
|
deccl |
⊢ ; 3 8 ∈ ℕ0 |
135 |
134 93
|
deccl |
⊢ ; ; 3 8 7 ∈ ℕ0 |
136 |
135 49
|
deccl |
⊢ ; ; ; 3 8 7 3 ∈ ℕ0 |
137 |
136 57
|
deccl |
⊢ ; ; ; ; 3 8 7 3 1 ∈ ℕ0 |
138 |
137 55
|
deccl |
⊢ ; ; ; ; ; 3 8 7 3 1 6 ∈ ℕ0 |
139 |
137 93
|
deccl |
⊢ ; ; ; ; ; 3 8 7 3 1 7 ∈ ℕ0 |
140 |
|
1lt10 |
⊢ 1 < ; 1 0 |
141 |
|
6lt7 |
⊢ 6 < 7 |
142 |
137 55 63 141
|
declt |
⊢ ; ; ; ; ; 3 8 7 3 1 6 < ; ; ; ; ; 3 8 7 3 1 7 |
143 |
138 139 57 93 140 142
|
decltc |
⊢ ; ; ; ; ; ; 3 8 7 3 1 6 1 < ; ; ; ; ; ; 3 8 7 3 1 7 7 |
144 |
|
eqid |
⊢ ; 7 3 = ; 7 3 |
145 |
57 50
|
deccl |
⊢ ; 1 5 ∈ ℕ0 |
146 |
|
9nn0 |
⊢ 9 ∈ ℕ0 |
147 |
145 146
|
deccl |
⊢ ; ; 1 5 9 ∈ ℕ0 |
148 |
147 57
|
deccl |
⊢ ; ; ; 1 5 9 1 ∈ ℕ0 |
149 |
148 93
|
deccl |
⊢ ; ; ; ; 1 5 9 1 7 ∈ ℕ0 |
150 |
|
eqid |
⊢ ; ; ; ; 5 3 0 5 7 = ; ; ; ; 5 3 0 5 7 |
151 |
|
eqid |
⊢ ; ; ; ; 1 5 9 1 7 = ; ; ; ; 1 5 9 1 7 |
152 |
|
eqid |
⊢ ; ; ; 5 3 0 5 = ; ; ; 5 3 0 5 |
153 |
|
eqid |
⊢ ; ; ; 1 5 9 1 = ; ; ; 1 5 9 1 |
154 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
155 |
|
5p1e6 |
⊢ ( 5 + 1 ) = 6 |
156 |
71 154 155
|
addcomli |
⊢ ( 1 + 5 ) = 6 |
157 |
147 57 50 153 156
|
decaddi |
⊢ ( ; ; ; 1 5 9 1 + 5 ) = ; ; ; 1 5 9 6 |
158 |
57 55
|
deccl |
⊢ ; 1 6 ∈ ℕ0 |
159 |
|
eqid |
⊢ ; ; 5 3 0 = ; ; 5 3 0 |
160 |
|
eqid |
⊢ ; ; 1 5 9 = ; ; 1 5 9 |
161 |
|
eqid |
⊢ ; 1 5 = ; 1 5 |
162 |
57 50 155 161
|
decsuc |
⊢ ( ; 1 5 + 1 ) = ; 1 6 |
163 |
|
9p4e13 |
⊢ ( 9 + 4 ) = ; 1 3 |
164 |
145 146 5 160 162 49 163
|
decaddci |
⊢ ( ; ; 1 5 9 + 4 ) = ; ; 1 6 3 |
165 |
|
eqid |
⊢ ; 5 3 = ; 5 3 |
166 |
158
|
nn0cni |
⊢ ; 1 6 ∈ ℂ |
167 |
166
|
addid1i |
⊢ ( ; 1 6 + 0 ) = ; 1 6 |
168 |
|
1p2e3 |
⊢ ( 1 + 2 ) = 3 |
169 |
168
|
oveq2i |
⊢ ( ( 5 · 7 ) + ( 1 + 2 ) ) = ( ( 5 · 7 ) + 3 ) |
170 |
|
5p3e8 |
⊢ ( 5 + 3 ) = 8 |
171 |
49 50 49 73 170
|
decaddi |
⊢ ( ( 5 · 7 ) + 3 ) = ; 3 8 |
172 |
169 171
|
eqtri |
⊢ ( ( 5 · 7 ) + ( 1 + 2 ) ) = ; 3 8 |
173 |
|
7t3e21 |
⊢ ( 7 · 3 ) = ; 2 1 |
174 |
70 98 173
|
mulcomli |
⊢ ( 3 · 7 ) = ; 2 1 |
175 |
|
6cn |
⊢ 6 ∈ ℂ |
176 |
175 154 59
|
addcomli |
⊢ ( 1 + 6 ) = 7 |
177 |
12 57 55 174 176
|
decaddi |
⊢ ( ( 3 · 7 ) + 6 ) = ; 2 7 |
178 |
50 49 57 55 165 167 93 93 12 172 177
|
decmac |
⊢ ( ( ; 5 3 · 7 ) + ( ; 1 6 + 0 ) ) = ; ; 3 8 7 |
179 |
70
|
mul02i |
⊢ ( 0 · 7 ) = 0 |
180 |
179
|
oveq1i |
⊢ ( ( 0 · 7 ) + 3 ) = ( 0 + 3 ) |
181 |
98
|
addid2i |
⊢ ( 0 + 3 ) = 3 |
182 |
49
|
dec0h |
⊢ 3 = ; 0 3 |
183 |
181 182
|
eqtri |
⊢ ( 0 + 3 ) = ; 0 3 |
184 |
180 183
|
eqtri |
⊢ ( ( 0 · 7 ) + 3 ) = ; 0 3 |
185 |
51 52 158 49 159 164 93 49 52 178 184
|
decmac |
⊢ ( ( ; ; 5 3 0 · 7 ) + ( ; ; 1 5 9 + 4 ) ) = ; ; ; 3 8 7 3 |
186 |
|
3p1e4 |
⊢ ( 3 + 1 ) = 4 |
187 |
|
6p5e11 |
⊢ ( 6 + 5 ) = ; 1 1 |
188 |
175 71 187
|
addcomli |
⊢ ( 5 + 6 ) = ; 1 1 |
189 |
49 50 55 73 186 57 188
|
decaddci |
⊢ ( ( 5 · 7 ) + 6 ) = ; 4 1 |
190 |
53 50 147 55 152 157 93 57 5 185 189
|
decmac |
⊢ ( ( ; ; ; 5 3 0 5 · 7 ) + ( ; ; ; 1 5 9 1 + 5 ) ) = ; ; ; ; 3 8 7 3 1 |
191 |
|
7t7e49 |
⊢ ( 7 · 7 ) = ; 4 9 |
192 |
|
4p1e5 |
⊢ ( 4 + 1 ) = 5 |
193 |
|
9p7e16 |
⊢ ( 9 + 7 ) = ; 1 6 |
194 |
5 146 93 191 192 55 193
|
decaddci |
⊢ ( ( 7 · 7 ) + 7 ) = ; 5 6 |
195 |
54 93 148 93 150 151 93 55 50 190 194
|
decmac |
⊢ ( ( ; ; ; ; 5 3 0 5 7 · 7 ) + ; ; ; ; 1 5 9 1 7 ) = ; ; ; ; ; 3 8 7 3 1 6 |
196 |
12
|
dec0h |
⊢ 2 = ; 0 2 |
197 |
154
|
addid2i |
⊢ ( 0 + 1 ) = 1 |
198 |
57
|
dec0h |
⊢ 1 = ; 0 1 |
199 |
197 198
|
eqtri |
⊢ ( 0 + 1 ) = ; 0 1 |
200 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
201 |
52
|
dec0h |
⊢ 0 = ; 0 0 |
202 |
200 201
|
eqtri |
⊢ ( 0 + 0 ) = ; 0 0 |
203 |
|
5t3e15 |
⊢ ( 5 · 3 ) = ; 1 5 |
204 |
203
|
oveq1i |
⊢ ( ( 5 · 3 ) + 0 ) = ( ; 1 5 + 0 ) |
205 |
145
|
nn0cni |
⊢ ; 1 5 ∈ ℂ |
206 |
205
|
addid1i |
⊢ ( ; 1 5 + 0 ) = ; 1 5 |
207 |
204 206
|
eqtri |
⊢ ( ( 5 · 3 ) + 0 ) = ; 1 5 |
208 |
|
3t3e9 |
⊢ ( 3 · 3 ) = 9 |
209 |
208
|
oveq1i |
⊢ ( ( 3 · 3 ) + 0 ) = ( 9 + 0 ) |
210 |
82
|
addid1i |
⊢ ( 9 + 0 ) = 9 |
211 |
209 210
|
eqtri |
⊢ ( ( 3 · 3 ) + 0 ) = 9 |
212 |
50 49 52 52 165 202 49 207 211
|
decma |
⊢ ( ( ; 5 3 · 3 ) + ( 0 + 0 ) ) = ; ; 1 5 9 |
213 |
98
|
mul02i |
⊢ ( 0 · 3 ) = 0 |
214 |
213
|
oveq1i |
⊢ ( ( 0 · 3 ) + 1 ) = ( 0 + 1 ) |
215 |
214 199
|
eqtri |
⊢ ( ( 0 · 3 ) + 1 ) = ; 0 1 |
216 |
51 52 52 57 159 199 49 57 52 212 215
|
decmac |
⊢ ( ( ; ; 5 3 0 · 3 ) + ( 0 + 1 ) ) = ; ; ; 1 5 9 1 |
217 |
|
5p2e7 |
⊢ ( 5 + 2 ) = 7 |
218 |
57 50 12 203 217
|
decaddi |
⊢ ( ( 5 · 3 ) + 2 ) = ; 1 7 |
219 |
53 50 52 12 152 196 49 93 57 216 218
|
decmac |
⊢ ( ( ; ; ; 5 3 0 5 · 3 ) + 2 ) = ; ; ; ; 1 5 9 1 7 |
220 |
49 54 93 150 57 12 219 173
|
decmul1c |
⊢ ( ; ; ; ; 5 3 0 5 7 · 3 ) = ; ; ; ; ; 1 5 9 1 7 1 |
221 |
124 93 49 144 57 149 195 220
|
decmul2c |
⊢ ( ; ; ; ; 5 3 0 5 7 · ; 7 3 ) = ; ; ; ; ; ; 3 8 7 3 1 6 1 |
222 |
50 50
|
deccl |
⊢ ; 5 5 ∈ ℕ0 |
223 |
222 49
|
deccl |
⊢ ; ; 5 5 3 ∈ ℕ0 |
224 |
223 49
|
deccl |
⊢ ; ; ; 5 5 3 3 ∈ ℕ0 |
225 |
224 57
|
deccl |
⊢ ; ; ; ; 5 5 3 3 1 ∈ ℕ0 |
226 |
12 50
|
deccl |
⊢ ; 2 5 ∈ ℕ0 |
227 |
226 49
|
deccl |
⊢ ; ; 2 5 3 ∈ ℕ0 |
228 |
12 57
|
deccl |
⊢ ; 2 1 ∈ ℕ0 |
229 |
228 133
|
deccl |
⊢ ; ; 2 1 8 ∈ ℕ0 |
230 |
93 12
|
deccl |
⊢ ; 7 2 ∈ ℕ0 |
231 |
|
3t2e6 |
⊢ ( 3 · 2 ) = 6 |
232 |
98 75 231
|
mulcomli |
⊢ ( 2 · 3 ) = 6 |
233 |
|
3exp3 |
⊢ ( 3 ↑ 3 ) = ; 2 7 |
234 |
12 93
|
deccl |
⊢ ; 2 7 ∈ ℕ0 |
235 |
|
eqid |
⊢ ; 2 7 = ; 2 7 |
236 |
57 133
|
deccl |
⊢ ; 1 8 ∈ ℕ0 |
237 |
|
eqid |
⊢ ; 1 8 = ; 1 8 |
238 |
|
2t2e4 |
⊢ ( 2 · 2 ) = 4 |
239 |
238 168
|
oveq12i |
⊢ ( ( 2 · 2 ) + ( 1 + 2 ) ) = ( 4 + 3 ) |
240 |
|
4p3e7 |
⊢ ( 4 + 3 ) = 7 |
241 |
239 240
|
eqtri |
⊢ ( ( 2 · 2 ) + ( 1 + 2 ) ) = 7 |
242 |
|
7t2e14 |
⊢ ( 7 · 2 ) = ; 1 4 |
243 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
244 |
|
8cn |
⊢ 8 ∈ ℂ |
245 |
|
8p4e12 |
⊢ ( 8 + 4 ) = ; 1 2 |
246 |
244 74 245
|
addcomli |
⊢ ( 4 + 8 ) = ; 1 2 |
247 |
57 5 133 242 243 12 246
|
decaddci |
⊢ ( ( 7 · 2 ) + 8 ) = ; 2 2 |
248 |
12 93 57 133 235 237 12 12 12 241 247
|
decmac |
⊢ ( ( ; 2 7 · 2 ) + ; 1 8 ) = ; 7 2 |
249 |
70 75 242
|
mulcomli |
⊢ ( 2 · 7 ) = ; 1 4 |
250 |
|
4p4e8 |
⊢ ( 4 + 4 ) = 8 |
251 |
57 5 5 249 250
|
decaddi |
⊢ ( ( 2 · 7 ) + 4 ) = ; 1 8 |
252 |
93 12 93 235 146 5 251 191
|
decmul1c |
⊢ ( ; 2 7 · 7 ) = ; ; 1 8 9 |
253 |
234 12 93 235 146 236 248 252
|
decmul2c |
⊢ ( ; 2 7 · ; 2 7 ) = ; ; 7 2 9 |
254 |
49 49 232 233 253
|
numexp2x |
⊢ ( 3 ↑ 6 ) = ; ; 7 2 9 |
255 |
|
eqid |
⊢ ; 7 2 = ; 7 2 |
256 |
232
|
oveq1i |
⊢ ( ( 2 · 3 ) + 2 ) = ( 6 + 2 ) |
257 |
|
6p2e8 |
⊢ ( 6 + 2 ) = 8 |
258 |
256 257
|
eqtri |
⊢ ( ( 2 · 3 ) + 2 ) = 8 |
259 |
93 12 12 255 49 173 258
|
decrmanc |
⊢ ( ( ; 7 2 · 3 ) + 2 ) = ; ; 2 1 8 |
260 |
|
9t3e27 |
⊢ ( 9 · 3 ) = ; 2 7 |
261 |
49 230 146 254 93 12 259 260
|
decmul1c |
⊢ ( ( 3 ↑ 6 ) · 3 ) = ; ; ; 2 1 8 7 |
262 |
49 55 59 261
|
numexpp1 |
⊢ ( 3 ↑ 7 ) = ; ; ; 2 1 8 7 |
263 |
57 93
|
deccl |
⊢ ; 1 7 ∈ ℕ0 |
264 |
263 93
|
deccl |
⊢ ; ; 1 7 7 ∈ ℕ0 |
265 |
|
eqid |
⊢ ; ; 2 1 8 = ; ; 2 1 8 |
266 |
|
eqid |
⊢ ; ; 1 7 7 = ; ; 1 7 7 |
267 |
12 52
|
deccl |
⊢ ; 2 0 ∈ ℕ0 |
268 |
267 49
|
deccl |
⊢ ; ; 2 0 3 ∈ ℕ0 |
269 |
12 12
|
deccl |
⊢ ; 2 2 ∈ ℕ0 |
270 |
|
eqid |
⊢ ; 2 1 = ; 2 1 |
271 |
|
eqid |
⊢ ; 1 7 = ; 1 7 |
272 |
|
eqid |
⊢ ; ; 2 0 3 = ; ; 2 0 3 |
273 |
|
eqid |
⊢ ; 2 0 = ; 2 0 |
274 |
75
|
addid2i |
⊢ ( 0 + 2 ) = 2 |
275 |
154
|
addid1i |
⊢ ( 1 + 0 ) = 1 |
276 |
52 57 12 52 198 273 274 275
|
decadd |
⊢ ( 1 + ; 2 0 ) = ; 2 1 |
277 |
12 57 243 276
|
decsuc |
⊢ ( ( 1 + ; 2 0 ) + 1 ) = ; 2 2 |
278 |
|
7p3e10 |
⊢ ( 7 + 3 ) = ; 1 0 |
279 |
57 93 267 49 271 272 277 278
|
decaddc2 |
⊢ ( ; 1 7 + ; ; 2 0 3 ) = ; ; 2 2 0 |
280 |
|
eqid |
⊢ ; ; 2 5 3 = ; ; 2 5 3 |
281 |
|
eqid |
⊢ ; 2 2 = ; 2 2 |
282 |
|
eqid |
⊢ ; 2 5 = ; 2 5 |
283 |
|
2p2e4 |
⊢ ( 2 + 2 ) = 4 |
284 |
71 75 217
|
addcomli |
⊢ ( 2 + 5 ) = 7 |
285 |
12 12 12 50 281 282 283 284
|
decadd |
⊢ ( ; 2 2 + ; 2 5 ) = ; 4 7 |
286 |
50
|
dec0h |
⊢ 5 = ; 0 5 |
287 |
192 286
|
eqtri |
⊢ ( 4 + 1 ) = ; 0 5 |
288 |
238 197
|
oveq12i |
⊢ ( ( 2 · 2 ) + ( 0 + 1 ) ) = ( 4 + 1 ) |
289 |
288 192
|
eqtri |
⊢ ( ( 2 · 2 ) + ( 0 + 1 ) ) = 5 |
290 |
|
5t2e10 |
⊢ ( 5 · 2 ) = ; 1 0 |
291 |
71
|
addid2i |
⊢ ( 0 + 5 ) = 5 |
292 |
57 52 50 290 291
|
decaddi |
⊢ ( ( 5 · 2 ) + 5 ) = ; 1 5 |
293 |
12 50 52 50 282 287 12 50 57 289 292
|
decmac |
⊢ ( ( ; 2 5 · 2 ) + ( 4 + 1 ) ) = ; 5 5 |
294 |
231
|
oveq1i |
⊢ ( ( 3 · 2 ) + 7 ) = ( 6 + 7 ) |
295 |
|
7p6e13 |
⊢ ( 7 + 6 ) = ; 1 3 |
296 |
70 175 295
|
addcomli |
⊢ ( 6 + 7 ) = ; 1 3 |
297 |
294 296
|
eqtri |
⊢ ( ( 3 · 2 ) + 7 ) = ; 1 3 |
298 |
226 49 5 93 280 285 12 49 57 293 297
|
decmac |
⊢ ( ( ; ; 2 5 3 · 2 ) + ( ; 2 2 + ; 2 5 ) ) = ; ; 5 5 3 |
299 |
227
|
nn0cni |
⊢ ; ; 2 5 3 ∈ ℂ |
300 |
299
|
mulid1i |
⊢ ( ; ; 2 5 3 · 1 ) = ; ; 2 5 3 |
301 |
300
|
oveq1i |
⊢ ( ( ; ; 2 5 3 · 1 ) + 0 ) = ( ; ; 2 5 3 + 0 ) |
302 |
299
|
addid1i |
⊢ ( ; ; 2 5 3 + 0 ) = ; ; 2 5 3 |
303 |
301 302
|
eqtri |
⊢ ( ( ; ; 2 5 3 · 1 ) + 0 ) = ; ; 2 5 3 |
304 |
12 57 269 52 270 279 227 49 226 298 303
|
decma2c |
⊢ ( ( ; ; 2 5 3 · ; 2 1 ) + ( ; 1 7 + ; ; 2 0 3 ) ) = ; ; ; 5 5 3 3 |
305 |
93
|
dec0h |
⊢ 7 = ; 0 7 |
306 |
74
|
addid2i |
⊢ ( 0 + 4 ) = 4 |
307 |
306
|
oveq2i |
⊢ ( ( 2 · 8 ) + ( 0 + 4 ) ) = ( ( 2 · 8 ) + 4 ) |
308 |
|
8t2e16 |
⊢ ( 8 · 2 ) = ; 1 6 |
309 |
244 75 308
|
mulcomli |
⊢ ( 2 · 8 ) = ; 1 6 |
310 |
|
6p4e10 |
⊢ ( 6 + 4 ) = ; 1 0 |
311 |
57 55 5 309 243 310
|
decaddci2 |
⊢ ( ( 2 · 8 ) + 4 ) = ; 2 0 |
312 |
307 311
|
eqtri |
⊢ ( ( 2 · 8 ) + ( 0 + 4 ) ) = ; 2 0 |
313 |
|
8t5e40 |
⊢ ( 8 · 5 ) = ; 4 0 |
314 |
244 71 313
|
mulcomli |
⊢ ( 5 · 8 ) = ; 4 0 |
315 |
5 52 49 314 181
|
decaddi |
⊢ ( ( 5 · 8 ) + 3 ) = ; 4 3 |
316 |
12 50 52 49 282 183 133 49 5 312 315
|
decmac |
⊢ ( ( ; 2 5 · 8 ) + ( 0 + 3 ) ) = ; ; 2 0 3 |
317 |
|
8t3e24 |
⊢ ( 8 · 3 ) = ; 2 4 |
318 |
244 98 317
|
mulcomli |
⊢ ( 3 · 8 ) = ; 2 4 |
319 |
|
2p1e3 |
⊢ ( 2 + 1 ) = 3 |
320 |
|
7p4e11 |
⊢ ( 7 + 4 ) = ; 1 1 |
321 |
70 74 320
|
addcomli |
⊢ ( 4 + 7 ) = ; 1 1 |
322 |
12 5 93 318 319 57 321
|
decaddci |
⊢ ( ( 3 · 8 ) + 7 ) = ; 3 1 |
323 |
226 49 52 93 280 305 133 57 49 316 322
|
decmac |
⊢ ( ( ; ; 2 5 3 · 8 ) + 7 ) = ; ; ; 2 0 3 1 |
324 |
228 133 263 93 265 266 227 57 268 304 323
|
decma2c |
⊢ ( ( ; ; 2 5 3 · ; ; 2 1 8 ) + ; ; 1 7 7 ) = ; ; ; ; 5 5 3 3 1 |
325 |
57 5 49 249 240
|
decaddi |
⊢ ( ( 2 · 7 ) + 3 ) = ; 1 7 |
326 |
49 50 12 73 217
|
decaddi |
⊢ ( ( 5 · 7 ) + 2 ) = ; 3 7 |
327 |
12 50 12 282 93 93 49 325 326
|
decrmac |
⊢ ( ( ; 2 5 · 7 ) + 2 ) = ; ; 1 7 7 |
328 |
93 226 49 280 57 12 327 174
|
decmul1c |
⊢ ( ; ; 2 5 3 · 7 ) = ; ; ; 1 7 7 1 |
329 |
227 229 93 262 57 264 324 328
|
decmul2c |
⊢ ( ; ; 2 5 3 · ( 3 ↑ 7 ) ) = ; ; ; ; ; 5 5 3 3 1 1 |
330 |
|
eqid |
⊢ ; ; ; ; 5 5 3 3 1 = ; ; ; ; 5 5 3 3 1 |
331 |
|
eqid |
⊢ ; ; ; 5 5 3 3 = ; ; ; 5 5 3 3 |
332 |
|
eqid |
⊢ ; ; 5 5 3 = ; ; 5 5 3 |
333 |
|
eqid |
⊢ ; 5 5 = ; 5 5 |
334 |
274 196
|
eqtri |
⊢ ( 0 + 2 ) = ; 0 2 |
335 |
181
|
oveq2i |
⊢ ( ( 5 · 7 ) + ( 0 + 3 ) ) = ( ( 5 · 7 ) + 3 ) |
336 |
335 171
|
eqtri |
⊢ ( ( 5 · 7 ) + ( 0 + 3 ) ) = ; 3 8 |
337 |
50 50 52 12 333 334 93 93 49 336 326
|
decmac |
⊢ ( ( ; 5 5 · 7 ) + ( 0 + 2 ) ) = ; ; 3 8 7 |
338 |
12 57 12 174 168
|
decaddi |
⊢ ( ( 3 · 7 ) + 2 ) = ; 2 3 |
339 |
222 49 52 12 332 196 93 49 12 337 338
|
decmac |
⊢ ( ( ; ; 5 5 3 · 7 ) + 2 ) = ; ; ; 3 8 7 3 |
340 |
93 223 49 331 57 12 339 174
|
decmul1c |
⊢ ( ; ; ; 5 5 3 3 · 7 ) = ; ; ; ; 3 8 7 3 1 |
341 |
70
|
mulid2i |
⊢ ( 1 · 7 ) = 7 |
342 |
93 224 57 330 340 341
|
decmul1 |
⊢ ( ; ; ; ; 5 5 3 3 1 · 7 ) = ; ; ; ; ; 3 8 7 3 1 7 |
343 |
93 225 57 329 342 341
|
decmul1 |
⊢ ( ( ; ; 2 5 3 · ( 3 ↑ 7 ) ) · 7 ) = ; ; ; ; ; ; 3 8 7 3 1 7 7 |
344 |
143 221 343
|
3brtr4i |
⊢ ( ; ; ; ; 5 3 0 5 7 · ; 7 3 ) < ( ( ; ; 2 5 3 · ( 3 ↑ 7 ) ) · 7 ) |
345 |
93 49
|
deccl |
⊢ ; 7 3 ∈ ℕ0 |
346 |
124 345
|
nn0mulcli |
⊢ ( ; ; ; ; 5 3 0 5 7 · ; 7 3 ) ∈ ℕ0 |
347 |
346
|
nn0rei |
⊢ ( ; ; ; ; 5 3 0 5 7 · ; 7 3 ) ∈ ℝ |
348 |
49 93
|
nn0expcli |
⊢ ( 3 ↑ 7 ) ∈ ℕ0 |
349 |
227 348
|
nn0mulcli |
⊢ ( ; ; 2 5 3 · ( 3 ↑ 7 ) ) ∈ ℕ0 |
350 |
349 93
|
nn0mulcli |
⊢ ( ( ; ; 2 5 3 · ( 3 ↑ 7 ) ) · 7 ) ∈ ℕ0 |
351 |
350
|
nn0rei |
⊢ ( ( ; ; 2 5 3 · ( 3 ↑ 7 ) ) · 7 ) ∈ ℝ |
352 |
62
|
nnrei |
⊢ 5 ∈ ℝ |
353 |
62
|
nngt0i |
⊢ 0 < 5 |
354 |
347 351 352 353
|
ltmul1ii |
⊢ ( ( ; ; ; ; 5 3 0 5 7 · ; 7 3 ) < ( ( ; ; 2 5 3 · ( 3 ↑ 7 ) ) · 7 ) ↔ ( ( ; ; ; ; 5 3 0 5 7 · ; 7 3 ) · 5 ) < ( ( ( ; ; 2 5 3 · ( 3 ↑ 7 ) ) · 7 ) · 5 ) ) |
355 |
344 354
|
mpbi |
⊢ ( ( ; ; ; ; 5 3 0 5 7 · ; 7 3 ) · 5 ) < ( ( ( ; ; 2 5 3 · ( 3 ↑ 7 ) ) · 7 ) · 5 ) |
356 |
124
|
nn0cni |
⊢ ; ; ; ; 5 3 0 5 7 ∈ ℂ |
357 |
345
|
nn0cni |
⊢ ; 7 3 ∈ ℂ |
358 |
356 357 71
|
mulassi |
⊢ ( ( ; ; ; ; 5 3 0 5 7 · ; 7 3 ) · 5 ) = ( ; ; ; ; 5 3 0 5 7 · ( ; 7 3 · 5 ) ) |
359 |
49 50 155 72
|
decsuc |
⊢ ( ( 7 · 5 ) + 1 ) = ; 3 6 |
360 |
71 98 203
|
mulcomli |
⊢ ( 3 · 5 ) = ; 1 5 |
361 |
50 93 49 144 50 57 359 360
|
decmul1c |
⊢ ( ; 7 3 · 5 ) = ; ; 3 6 5 |
362 |
361
|
oveq2i |
⊢ ( ; ; ; ; 5 3 0 5 7 · ( ; 7 3 · 5 ) ) = ( ; ; ; ; 5 3 0 5 7 · ; ; 3 6 5 ) |
363 |
358 362
|
eqtri |
⊢ ( ( ; ; ; ; 5 3 0 5 7 · ; 7 3 ) · 5 ) = ( ; ; ; ; 5 3 0 5 7 · ; ; 3 6 5 ) |
364 |
299 96
|
mulcli |
⊢ ( ; ; 2 5 3 · ( 3 ↑ 7 ) ) ∈ ℂ |
365 |
364 70 71
|
mulassi |
⊢ ( ( ( ; ; 2 5 3 · ( 3 ↑ 7 ) ) · 7 ) · 5 ) = ( ( ; ; 2 5 3 · ( 3 ↑ 7 ) ) · ( 7 · 5 ) ) |
366 |
70 71
|
mulcomi |
⊢ ( 7 · 5 ) = ( 5 · 7 ) |
367 |
366
|
oveq2i |
⊢ ( ( ; ; 2 5 3 · ( 3 ↑ 7 ) ) · ( 7 · 5 ) ) = ( ( ; ; 2 5 3 · ( 3 ↑ 7 ) ) · ( 5 · 7 ) ) |
368 |
299 96 97
|
mulassi |
⊢ ( ( ; ; 2 5 3 · ( 3 ↑ 7 ) ) · ( 5 · 7 ) ) = ( ; ; 2 5 3 · ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ) |
369 |
367 368
|
eqtri |
⊢ ( ( ; ; 2 5 3 · ( 3 ↑ 7 ) ) · ( 7 · 5 ) ) = ( ; ; 2 5 3 · ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ) |
370 |
365 369
|
eqtri |
⊢ ( ( ( ; ; 2 5 3 · ( 3 ↑ 7 ) ) · 7 ) · 5 ) = ( ; ; 2 5 3 · ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ) |
371 |
355 363 370
|
3brtr3i |
⊢ ( ; ; ; ; 5 3 0 5 7 · ; ; 3 6 5 ) < ( ; ; 2 5 3 · ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ) |
372 |
49 55
|
deccl |
⊢ ; 3 6 ∈ ℕ0 |
373 |
372 62
|
decnncl |
⊢ ; ; 3 6 5 ∈ ℕ |
374 |
373
|
nnrei |
⊢ ; ; 3 6 5 ∈ ℝ |
375 |
373
|
nngt0i |
⊢ 0 < ; ; 3 6 5 |
376 |
374 375
|
pm3.2i |
⊢ ( ; ; 3 6 5 ∈ ℝ ∧ 0 < ; ; 3 6 5 ) |
377 |
227
|
nn0rei |
⊢ ; ; 2 5 3 ∈ ℝ |
378 |
|
lt2mul2div |
⊢ ( ( ( ; ; ; ; 5 3 0 5 7 ∈ ℝ ∧ ( ; ; 3 6 5 ∈ ℝ ∧ 0 < ; ; 3 6 5 ) ) ∧ ( ; ; 2 5 3 ∈ ℝ ∧ ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ∈ ℝ ∧ 0 < ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ) ) ) → ( ( ; ; ; ; 5 3 0 5 7 · ; ; 3 6 5 ) < ( ; ; 2 5 3 · ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ) ↔ ( ; ; ; ; 5 3 0 5 7 / ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ) < ( ; ; 2 5 3 / ; ; 3 6 5 ) ) ) |
379 |
125 376 377 129 378
|
mp4an |
⊢ ( ( ; ; ; ; 5 3 0 5 7 · ; ; 3 6 5 ) < ( ; ; 2 5 3 · ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ) ↔ ( ; ; ; ; 5 3 0 5 7 / ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ) < ( ; ; 2 5 3 / ; ; 3 6 5 ) ) |
380 |
371 379
|
mpbi |
⊢ ( ; ; ; ; 5 3 0 5 7 / ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ) < ( ; ; 2 5 3 / ; ; 3 6 5 ) |
381 |
|
nndivre |
⊢ ( ( ; ; ; ; 5 3 0 5 7 ∈ ℝ ∧ ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ∈ ℕ ) → ( ; ; ; ; 5 3 0 5 7 / ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ) ∈ ℝ ) |
382 |
125 126 381
|
mp2an |
⊢ ( ; ; ; ; 5 3 0 5 7 / ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ) ∈ ℝ |
383 |
|
nndivre |
⊢ ( ( ; ; 2 5 3 ∈ ℝ ∧ ; ; 3 6 5 ∈ ℕ ) → ( ; ; 2 5 3 / ; ; 3 6 5 ) ∈ ℝ ) |
384 |
377 373 383
|
mp2an |
⊢ ( ; ; 2 5 3 / ; ; 3 6 5 ) ∈ ℝ |
385 |
123 382 384
|
lelttri |
⊢ ( ( ( Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) + ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) ) ≤ ( ; ; ; ; 5 3 0 5 7 / ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ) ∧ ( ; ; ; ; 5 3 0 5 7 / ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ) < ( ; ; 2 5 3 / ; ; 3 6 5 ) ) → ( Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) + ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) ) < ( ; ; 2 5 3 / ; ; 3 6 5 ) ) |
386 |
132 380 385
|
mp2an |
⊢ ( Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) + ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) ) < ( ; ; 2 5 3 / ; ; 3 6 5 ) |
387 |
27 123 384
|
lelttri |
⊢ ( ( ( log ‘ 2 ) ≤ ( Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) + ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) ) ∧ ( Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) + ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) ) < ( ; ; 2 5 3 / ; ; 3 6 5 ) ) → ( log ‘ 2 ) < ( ; ; 2 5 3 / ; ; 3 6 5 ) ) |
388 |
47 386 387
|
mp2an |
⊢ ( log ‘ 2 ) < ( ; ; 2 5 3 / ; ; 3 6 5 ) |