Description: Lemma for log2ub . In decimal, this is a proof that the first four terms of the series for log 2 is less than 5 3 0 5 6 / 7 6 5 4 5 . (Contributed by Mario Carneiro, 17-Apr-2015) (Proof shortened by AV, 15-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | log2ublem3 | ⊢ ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ) ≤ ; ; ; ; 5 3 0 5 6 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0le0 | ⊢ 0 ≤ 0 | |
| 2 | risefall0lem | ⊢ ( 0 ... ( 0 − 1 ) ) = ∅ | |
| 3 | 2 | sumeq1i | ⊢ Σ 𝑛 ∈ ( 0 ... ( 0 − 1 ) ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) = Σ 𝑛 ∈ ∅ ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) |
| 4 | sum0 | ⊢ Σ 𝑛 ∈ ∅ ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) = 0 | |
| 5 | 3 4 | eqtri | ⊢ Σ 𝑛 ∈ ( 0 ... ( 0 − 1 ) ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) = 0 |
| 6 | 5 | oveq2i | ⊢ ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · Σ 𝑛 ∈ ( 0 ... ( 0 − 1 ) ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ) = ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · 0 ) |
| 7 | 3cn | ⊢ 3 ∈ ℂ | |
| 8 | 7nn0 | ⊢ 7 ∈ ℕ0 | |
| 9 | expcl | ⊢ ( ( 3 ∈ ℂ ∧ 7 ∈ ℕ0 ) → ( 3 ↑ 7 ) ∈ ℂ ) | |
| 10 | 7 8 9 | mp2an | ⊢ ( 3 ↑ 7 ) ∈ ℂ |
| 11 | 5cn | ⊢ 5 ∈ ℂ | |
| 12 | 7cn | ⊢ 7 ∈ ℂ | |
| 13 | 11 12 | mulcli | ⊢ ( 5 · 7 ) ∈ ℂ |
| 14 | 10 13 | mulcli | ⊢ ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ∈ ℂ |
| 15 | 14 | mul01i | ⊢ ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · 0 ) = 0 |
| 16 | 6 15 | eqtri | ⊢ ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · Σ 𝑛 ∈ ( 0 ... ( 0 − 1 ) ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ) = 0 |
| 17 | 2cn | ⊢ 2 ∈ ℂ | |
| 18 | 17 | mul01i | ⊢ ( 2 · 0 ) = 0 |
| 19 | 1 16 18 | 3brtr4i | ⊢ ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · Σ 𝑛 ∈ ( 0 ... ( 0 − 1 ) ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ) ≤ ( 2 · 0 ) |
| 20 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 21 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 22 | 5nn0 | ⊢ 5 ∈ ℕ0 | |
| 23 | 21 22 | deccl | ⊢ ; 2 5 ∈ ℕ0 |
| 24 | 23 22 | deccl | ⊢ ; ; 2 5 5 ∈ ℕ0 |
| 25 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 26 | 24 25 | deccl | ⊢ ; ; ; 2 5 5 1 ∈ ℕ0 |
| 27 | 26 22 | deccl | ⊢ ; ; ; ; 2 5 5 1 5 ∈ ℕ0 |
| 28 | eqid | ⊢ ( 0 − 1 ) = ( 0 − 1 ) | |
| 29 | 27 | nn0cni | ⊢ ; ; ; ; 2 5 5 1 5 ∈ ℂ |
| 30 | 29 | addlidi | ⊢ ( 0 + ; ; ; ; 2 5 5 1 5 ) = ; ; ; ; 2 5 5 1 5 |
| 31 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
| 32 | 7 | addridi | ⊢ ( 3 + 0 ) = 3 |
| 33 | 29 | mullidi | ⊢ ( 1 · ; ; ; ; 2 5 5 1 5 ) = ; ; ; ; 2 5 5 1 5 |
| 34 | 18 | oveq1i | ⊢ ( ( 2 · 0 ) + 1 ) = ( 0 + 1 ) |
| 35 | 0p1e1 | ⊢ ( 0 + 1 ) = 1 | |
| 36 | 34 35 | eqtri | ⊢ ( ( 2 · 0 ) + 1 ) = 1 |
| 37 | 36 | oveq1i | ⊢ ( ( ( 2 · 0 ) + 1 ) · ; ; ; ; 2 5 5 1 5 ) = ( 1 · ; ; ; ; 2 5 5 1 5 ) |
| 38 | 22 8 | nn0mulcli | ⊢ ( 5 · 7 ) ∈ ℕ0 |
| 39 | 8 21 | deccl | ⊢ ; 7 2 ∈ ℕ0 |
| 40 | 9nn0 | ⊢ 9 ∈ ℕ0 | |
| 41 | 2p1e3 | ⊢ ( 2 + 1 ) = 3 | |
| 42 | 8nn0 | ⊢ 8 ∈ ℕ0 | |
| 43 | 1p1e2 | ⊢ ( 1 + 1 ) = 2 | |
| 44 | 9cn | ⊢ 9 ∈ ℂ | |
| 45 | exp1 | ⊢ ( 9 ∈ ℂ → ( 9 ↑ 1 ) = 9 ) | |
| 46 | 44 45 | ax-mp | ⊢ ( 9 ↑ 1 ) = 9 |
| 47 | 46 | oveq1i | ⊢ ( ( 9 ↑ 1 ) · 9 ) = ( 9 · 9 ) |
| 48 | 9t9e81 | ⊢ ( 9 · 9 ) = ; 8 1 | |
| 49 | 47 48 | eqtri | ⊢ ( ( 9 ↑ 1 ) · 9 ) = ; 8 1 |
| 50 | 40 25 43 49 | numexpp1 | ⊢ ( 9 ↑ 2 ) = ; 8 1 |
| 51 | 8cn | ⊢ 8 ∈ ℂ | |
| 52 | 9t8e72 | ⊢ ( 9 · 8 ) = ; 7 2 | |
| 53 | 44 51 52 | mulcomli | ⊢ ( 8 · 9 ) = ; 7 2 |
| 54 | 44 | mullidi | ⊢ ( 1 · 9 ) = 9 |
| 55 | 40 42 25 50 53 54 | decmul1 | ⊢ ( ( 9 ↑ 2 ) · 9 ) = ; ; 7 2 9 |
| 56 | 40 21 41 55 | numexpp1 | ⊢ ( 9 ↑ 3 ) = ; ; 7 2 9 |
| 57 | 31 25 | deccl | ⊢ ; 3 1 ∈ ℕ0 |
| 58 | eqid | ⊢ ; 7 2 = ; 7 2 | |
| 59 | eqid | ⊢ ; 3 1 = ; 3 1 | |
| 60 | 7t5e35 | ⊢ ( 7 · 5 ) = ; 3 5 | |
| 61 | 12 11 60 | mulcomli | ⊢ ( 5 · 7 ) = ; 3 5 |
| 62 | 7p3e10 | ⊢ ( 7 + 3 ) = ; 1 0 | |
| 63 | 12 7 62 | addcomli | ⊢ ( 3 + 7 ) = ; 1 0 |
| 64 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 65 | 3p1e4 | ⊢ ( 3 + 1 ) = 4 | |
| 66 | 7 64 65 | addcomli | ⊢ ( 1 + 3 ) = 4 |
| 67 | 66 | oveq2i | ⊢ ( ( 3 · 7 ) + ( 1 + 3 ) ) = ( ( 3 · 7 ) + 4 ) |
| 68 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
| 69 | 7t3e21 | ⊢ ( 7 · 3 ) = ; 2 1 | |
| 70 | 12 7 69 | mulcomli | ⊢ ( 3 · 7 ) = ; 2 1 |
| 71 | 4cn | ⊢ 4 ∈ ℂ | |
| 72 | 4p1e5 | ⊢ ( 4 + 1 ) = 5 | |
| 73 | 71 64 72 | addcomli | ⊢ ( 1 + 4 ) = 5 |
| 74 | 21 25 68 70 73 | decaddi | ⊢ ( ( 3 · 7 ) + 4 ) = ; 2 5 |
| 75 | 67 74 | eqtri | ⊢ ( ( 3 · 7 ) + ( 1 + 3 ) ) = ; 2 5 |
| 76 | 61 | oveq1i | ⊢ ( ( 5 · 7 ) + 0 ) = ( ; 3 5 + 0 ) |
| 77 | 31 22 | deccl | ⊢ ; 3 5 ∈ ℕ0 |
| 78 | 77 | nn0cni | ⊢ ; 3 5 ∈ ℂ |
| 79 | 78 | addridi | ⊢ ( ; 3 5 + 0 ) = ; 3 5 |
| 80 | 76 79 | eqtri | ⊢ ( ( 5 · 7 ) + 0 ) = ; 3 5 |
| 81 | 31 22 25 20 61 63 8 22 31 75 80 | decmac | ⊢ ( ( ( 5 · 7 ) · 7 ) + ( 3 + 7 ) ) = ; ; 2 5 5 |
| 82 | 25 | dec0h | ⊢ 1 = ; 0 1 |
| 83 | 3t2e6 | ⊢ ( 3 · 2 ) = 6 | |
| 84 | 83 35 | oveq12i | ⊢ ( ( 3 · 2 ) + ( 0 + 1 ) ) = ( 6 + 1 ) |
| 85 | 6p1e7 | ⊢ ( 6 + 1 ) = 7 | |
| 86 | 84 85 | eqtri | ⊢ ( ( 3 · 2 ) + ( 0 + 1 ) ) = 7 |
| 87 | 5t2e10 | ⊢ ( 5 · 2 ) = ; 1 0 | |
| 88 | 25 20 35 87 | decsuc | ⊢ ( ( 5 · 2 ) + 1 ) = ; 1 1 |
| 89 | 31 22 20 25 61 82 21 25 25 86 88 | decmac | ⊢ ( ( ( 5 · 7 ) · 2 ) + 1 ) = ; 7 1 |
| 90 | 8 21 31 25 58 59 38 25 8 81 89 | decma2c | ⊢ ( ( ( 5 · 7 ) · ; 7 2 ) + ; 3 1 ) = ; ; ; 2 5 5 1 |
| 91 | 9t3e27 | ⊢ ( 9 · 3 ) = ; 2 7 | |
| 92 | 44 7 91 | mulcomli | ⊢ ( 3 · 9 ) = ; 2 7 |
| 93 | 7p4e11 | ⊢ ( 7 + 4 ) = ; 1 1 | |
| 94 | 21 8 68 92 41 25 93 | decaddci | ⊢ ( ( 3 · 9 ) + 4 ) = ; 3 1 |
| 95 | 9t5e45 | ⊢ ( 9 · 5 ) = ; 4 5 | |
| 96 | 44 11 95 | mulcomli | ⊢ ( 5 · 9 ) = ; 4 5 |
| 97 | 40 31 22 61 22 68 94 96 | decmul1c | ⊢ ( ( 5 · 7 ) · 9 ) = ; ; 3 1 5 |
| 98 | 38 39 40 56 22 57 90 97 | decmul2c | ⊢ ( ( 5 · 7 ) · ( 9 ↑ 3 ) ) = ; ; ; ; 2 5 5 1 5 |
| 99 | 33 37 98 | 3eqtr4ri | ⊢ ( ( 5 · 7 ) · ( 9 ↑ 3 ) ) = ( ( ( 2 · 0 ) + 1 ) · ; ; ; ; 2 5 5 1 5 ) |
| 100 | 19 20 27 20 28 30 31 32 99 | log2ublem2 | ⊢ ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · Σ 𝑛 ∈ ( 0 ... 0 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ) ≤ ( 2 · ; ; ; ; 2 5 5 1 5 ) |
| 101 | 40 68 | deccl | ⊢ ; 9 4 ∈ ℕ0 |
| 102 | 101 22 | deccl | ⊢ ; ; 9 4 5 ∈ ℕ0 |
| 103 | 1m1e0 | ⊢ ( 1 − 1 ) = 0 | |
| 104 | eqid | ⊢ ; ; ; ; 2 5 5 1 5 = ; ; ; ; 2 5 5 1 5 | |
| 105 | eqid | ⊢ ; ; 9 4 5 = ; ; 9 4 5 | |
| 106 | 6nn0 | ⊢ 6 ∈ ℕ0 | |
| 107 | 21 106 | deccl | ⊢ ; 2 6 ∈ ℕ0 |
| 108 | 107 68 | deccl | ⊢ ; ; 2 6 4 ∈ ℕ0 |
| 109 | 5p1e6 | ⊢ ( 5 + 1 ) = 6 | |
| 110 | eqid | ⊢ ; ; ; 2 5 5 1 = ; ; ; 2 5 5 1 | |
| 111 | eqid | ⊢ ; 9 4 = ; 9 4 | |
| 112 | eqid | ⊢ ; ; 2 5 5 = ; ; 2 5 5 | |
| 113 | eqid | ⊢ ; 2 5 = ; 2 5 | |
| 114 | 21 22 109 113 | decsuc | ⊢ ( ; 2 5 + 1 ) = ; 2 6 |
| 115 | 9p5e14 | ⊢ ( 9 + 5 ) = ; 1 4 | |
| 116 | 44 11 115 | addcomli | ⊢ ( 5 + 9 ) = ; 1 4 |
| 117 | 23 22 40 112 114 68 116 | decaddci | ⊢ ( ; ; 2 5 5 + 9 ) = ; ; 2 6 4 |
| 118 | 24 25 40 68 110 111 117 73 | decadd | ⊢ ( ; ; ; 2 5 5 1 + ; 9 4 ) = ; ; ; 2 6 4 5 |
| 119 | 108 22 109 118 | decsuc | ⊢ ( ( ; ; ; 2 5 5 1 + ; 9 4 ) + 1 ) = ; ; ; 2 6 4 6 |
| 120 | 5p5e10 | ⊢ ( 5 + 5 ) = ; 1 0 | |
| 121 | 26 22 101 22 104 105 119 120 | decaddc2 | ⊢ ( ; ; ; ; 2 5 5 1 5 + ; ; 9 4 5 ) = ; ; ; ; 2 6 4 6 0 |
| 122 | 44 | sqvali | ⊢ ( 9 ↑ 2 ) = ( 9 · 9 ) |
| 123 | 3t3e9 | ⊢ ( 3 · 3 ) = 9 | |
| 124 | 123 | oveq1i | ⊢ ( ( 3 · 3 ) · 9 ) = ( 9 · 9 ) |
| 125 | 7 7 44 | mulassi | ⊢ ( ( 3 · 3 ) · 9 ) = ( 3 · ( 3 · 9 ) ) |
| 126 | 122 124 125 | 3eqtr2i | ⊢ ( 9 ↑ 2 ) = ( 3 · ( 3 · 9 ) ) |
| 127 | 126 | oveq2i | ⊢ ( ( 5 · 7 ) · ( 9 ↑ 2 ) ) = ( ( 5 · 7 ) · ( 3 · ( 3 · 9 ) ) ) |
| 128 | 7 44 | mulcli | ⊢ ( 3 · 9 ) ∈ ℂ |
| 129 | 13 7 128 | mul12i | ⊢ ( ( 5 · 7 ) · ( 3 · ( 3 · 9 ) ) ) = ( 3 · ( ( 5 · 7 ) · ( 3 · 9 ) ) ) |
| 130 | 21 68 | deccl | ⊢ ; 2 4 ∈ ℕ0 |
| 131 | eqid | ⊢ ; 2 4 = ; 2 4 | |
| 132 | 83 41 | oveq12i | ⊢ ( ( 3 · 2 ) + ( 2 + 1 ) ) = ( 6 + 3 ) |
| 133 | 6p3e9 | ⊢ ( 6 + 3 ) = 9 | |
| 134 | 132 133 | eqtri | ⊢ ( ( 3 · 2 ) + ( 2 + 1 ) ) = 9 |
| 135 | 71 | addlidi | ⊢ ( 0 + 4 ) = 4 |
| 136 | 25 20 68 87 135 | decaddi | ⊢ ( ( 5 · 2 ) + 4 ) = ; 1 4 |
| 137 | 31 22 21 68 61 131 21 68 25 134 136 | decmac | ⊢ ( ( ( 5 · 7 ) · 2 ) + ; 2 4 ) = ; 9 4 |
| 138 | 21 25 31 70 66 | decaddi | ⊢ ( ( 3 · 7 ) + 3 ) = ; 2 4 |
| 139 | 8 31 22 61 22 31 138 61 | decmul1c | ⊢ ( ( 5 · 7 ) · 7 ) = ; ; 2 4 5 |
| 140 | 38 21 8 92 22 130 137 139 | decmul2c | ⊢ ( ( 5 · 7 ) · ( 3 · 9 ) ) = ; ; 9 4 5 |
| 141 | 140 | oveq2i | ⊢ ( 3 · ( ( 5 · 7 ) · ( 3 · 9 ) ) ) = ( 3 · ; ; 9 4 5 ) |
| 142 | 129 141 | eqtri | ⊢ ( ( 5 · 7 ) · ( 3 · ( 3 · 9 ) ) ) = ( 3 · ; ; 9 4 5 ) |
| 143 | df-3 | ⊢ 3 = ( 2 + 1 ) | |
| 144 | 17 | mulridi | ⊢ ( 2 · 1 ) = 2 |
| 145 | 144 | oveq1i | ⊢ ( ( 2 · 1 ) + 1 ) = ( 2 + 1 ) |
| 146 | 143 145 | eqtr4i | ⊢ 3 = ( ( 2 · 1 ) + 1 ) |
| 147 | 146 | oveq1i | ⊢ ( 3 · ; ; 9 4 5 ) = ( ( ( 2 · 1 ) + 1 ) · ; ; 9 4 5 ) |
| 148 | 127 142 147 | 3eqtri | ⊢ ( ( 5 · 7 ) · ( 9 ↑ 2 ) ) = ( ( ( 2 · 1 ) + 1 ) · ; ; 9 4 5 ) |
| 149 | 100 27 102 25 103 121 21 41 148 | log2ublem2 | ⊢ ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · Σ 𝑛 ∈ ( 0 ... 1 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ) ≤ ( 2 · ; ; ; ; 2 6 4 6 0 ) |
| 150 | 108 106 | deccl | ⊢ ; ; ; 2 6 4 6 ∈ ℕ0 |
| 151 | 150 20 | deccl | ⊢ ; ; ; ; 2 6 4 6 0 ∈ ℕ0 |
| 152 | 106 31 | deccl | ⊢ ; 6 3 ∈ ℕ0 |
| 153 | 2m1e1 | ⊢ ( 2 − 1 ) = 1 | |
| 154 | eqid | ⊢ ; ; ; ; 2 6 4 6 0 = ; ; ; ; 2 6 4 6 0 | |
| 155 | eqid | ⊢ ; 6 3 = ; 6 3 | |
| 156 | eqid | ⊢ ; ; ; 2 6 4 6 = ; ; ; 2 6 4 6 | |
| 157 | eqid | ⊢ ; ; 2 6 4 = ; ; 2 6 4 | |
| 158 | 107 68 72 157 | decsuc | ⊢ ( ; ; 2 6 4 + 1 ) = ; ; 2 6 5 |
| 159 | 6p6e12 | ⊢ ( 6 + 6 ) = ; 1 2 | |
| 160 | 108 106 106 156 158 21 159 | decaddci | ⊢ ( ; ; ; 2 6 4 6 + 6 ) = ; ; ; 2 6 5 2 |
| 161 | 7 | addlidi | ⊢ ( 0 + 3 ) = 3 |
| 162 | 150 20 106 31 154 155 160 161 | decadd | ⊢ ( ; ; ; ; 2 6 4 6 0 + ; 6 3 ) = ; ; ; ; 2 6 5 2 3 |
| 163 | 1p2e3 | ⊢ ( 1 + 2 ) = 3 | |
| 164 | 46 | oveq2i | ⊢ ( ( 5 · 7 ) · ( 9 ↑ 1 ) ) = ( ( 5 · 7 ) · 9 ) |
| 165 | 11 12 44 | mulassi | ⊢ ( ( 5 · 7 ) · 9 ) = ( 5 · ( 7 · 9 ) ) |
| 166 | 9t7e63 | ⊢ ( 9 · 7 ) = ; 6 3 | |
| 167 | 44 12 166 | mulcomli | ⊢ ( 7 · 9 ) = ; 6 3 |
| 168 | 167 | oveq2i | ⊢ ( 5 · ( 7 · 9 ) ) = ( 5 · ; 6 3 ) |
| 169 | 165 168 | eqtri | ⊢ ( ( 5 · 7 ) · 9 ) = ( 5 · ; 6 3 ) |
| 170 | df-5 | ⊢ 5 = ( 4 + 1 ) | |
| 171 | 2t2e4 | ⊢ ( 2 · 2 ) = 4 | |
| 172 | 171 | oveq1i | ⊢ ( ( 2 · 2 ) + 1 ) = ( 4 + 1 ) |
| 173 | 170 172 | eqtr4i | ⊢ 5 = ( ( 2 · 2 ) + 1 ) |
| 174 | 173 | oveq1i | ⊢ ( 5 · ; 6 3 ) = ( ( ( 2 · 2 ) + 1 ) · ; 6 3 ) |
| 175 | 164 169 174 | 3eqtri | ⊢ ( ( 5 · 7 ) · ( 9 ↑ 1 ) ) = ( ( ( 2 · 2 ) + 1 ) · ; 6 3 ) |
| 176 | 149 151 152 21 153 162 25 163 175 | log2ublem2 | ⊢ ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · Σ 𝑛 ∈ ( 0 ... 2 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ) ≤ ( 2 · ; ; ; ; 2 6 5 2 3 ) |
| 177 | 107 22 | deccl | ⊢ ; ; 2 6 5 ∈ ℕ0 |
| 178 | 177 21 | deccl | ⊢ ; ; ; 2 6 5 2 ∈ ℕ0 |
| 179 | 178 31 | deccl | ⊢ ; ; ; ; 2 6 5 2 3 ∈ ℕ0 |
| 180 | 3m1e2 | ⊢ ( 3 − 1 ) = 2 | |
| 181 | eqid | ⊢ ; ; ; ; 2 6 5 2 3 = ; ; ; ; 2 6 5 2 3 | |
| 182 | 5p3e8 | ⊢ ( 5 + 3 ) = 8 | |
| 183 | 11 7 182 | addcomli | ⊢ ( 3 + 5 ) = 8 |
| 184 | 178 31 22 181 183 | decaddi | ⊢ ( ; ; ; ; 2 6 5 2 3 + 5 ) = ; ; ; ; 2 6 5 2 8 |
| 185 | 12 11 | mulcli | ⊢ ( 7 · 5 ) ∈ ℂ |
| 186 | 185 | mulridi | ⊢ ( ( 7 · 5 ) · 1 ) = ( 7 · 5 ) |
| 187 | 11 12 | mulcomi | ⊢ ( 5 · 7 ) = ( 7 · 5 ) |
| 188 | exp0 | ⊢ ( 9 ∈ ℂ → ( 9 ↑ 0 ) = 1 ) | |
| 189 | 44 188 | ax-mp | ⊢ ( 9 ↑ 0 ) = 1 |
| 190 | 187 189 | oveq12i | ⊢ ( ( 5 · 7 ) · ( 9 ↑ 0 ) ) = ( ( 7 · 5 ) · 1 ) |
| 191 | 7 17 83 | mulcomli | ⊢ ( 2 · 3 ) = 6 |
| 192 | 191 | oveq1i | ⊢ ( ( 2 · 3 ) + 1 ) = ( 6 + 1 ) |
| 193 | df-7 | ⊢ 7 = ( 6 + 1 ) | |
| 194 | 192 193 | eqtr4i | ⊢ ( ( 2 · 3 ) + 1 ) = 7 |
| 195 | 194 | oveq1i | ⊢ ( ( ( 2 · 3 ) + 1 ) · 5 ) = ( 7 · 5 ) |
| 196 | 186 190 195 | 3eqtr4i | ⊢ ( ( 5 · 7 ) · ( 9 ↑ 0 ) ) = ( ( ( 2 · 3 ) + 1 ) · 5 ) |
| 197 | 176 179 22 31 180 184 20 161 196 | log2ublem2 | ⊢ ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ) ≤ ( 2 · ; ; ; ; 2 6 5 2 8 ) |
| 198 | eqid | ⊢ ; ; ; ; 2 6 5 2 8 = ; ; ; ; 2 6 5 2 8 | |
| 199 | eqid | ⊢ ; ; ; 2 6 5 2 = ; ; ; 2 6 5 2 | |
| 200 | eqid | ⊢ ; ; 2 6 5 = ; ; 2 6 5 | |
| 201 | 00id | ⊢ ( 0 + 0 ) = 0 | |
| 202 | 20 | dec0h | ⊢ 0 = ; 0 0 |
| 203 | 201 202 | eqtri | ⊢ ( 0 + 0 ) = ; 0 0 |
| 204 | eqid | ⊢ ; 2 6 = ; 2 6 | |
| 205 | 35 82 | eqtri | ⊢ ( 0 + 1 ) = ; 0 1 |
| 206 | 171 35 | oveq12i | ⊢ ( ( 2 · 2 ) + ( 0 + 1 ) ) = ( 4 + 1 ) |
| 207 | 206 72 | eqtri | ⊢ ( ( 2 · 2 ) + ( 0 + 1 ) ) = 5 |
| 208 | 6cn | ⊢ 6 ∈ ℂ | |
| 209 | 6t2e12 | ⊢ ( 6 · 2 ) = ; 1 2 | |
| 210 | 208 17 209 | mulcomli | ⊢ ( 2 · 6 ) = ; 1 2 |
| 211 | 25 21 41 210 | decsuc | ⊢ ( ( 2 · 6 ) + 1 ) = ; 1 3 |
| 212 | 21 106 20 25 204 205 21 31 25 207 211 | decma2c | ⊢ ( ( 2 · ; 2 6 ) + ( 0 + 1 ) ) = ; 5 3 |
| 213 | 11 17 87 | mulcomli | ⊢ ( 2 · 5 ) = ; 1 0 |
| 214 | 213 | oveq1i | ⊢ ( ( 2 · 5 ) + 0 ) = ( ; 1 0 + 0 ) |
| 215 | dec10p | ⊢ ( ; 1 0 + 0 ) = ; 1 0 | |
| 216 | 214 215 | eqtri | ⊢ ( ( 2 · 5 ) + 0 ) = ; 1 0 |
| 217 | 107 22 20 20 200 203 21 20 25 212 216 | decma2c | ⊢ ( ( 2 · ; ; 2 6 5 ) + ( 0 + 0 ) ) = ; ; 5 3 0 |
| 218 | 22 | dec0h | ⊢ 5 = ; 0 5 |
| 219 | 172 72 218 | 3eqtri | ⊢ ( ( 2 · 2 ) + 1 ) = ; 0 5 |
| 220 | 177 21 20 25 199 82 21 22 20 217 219 | decma2c | ⊢ ( ( 2 · ; ; ; 2 6 5 2 ) + 1 ) = ; ; ; 5 3 0 5 |
| 221 | 8t2e16 | ⊢ ( 8 · 2 ) = ; 1 6 | |
| 222 | 51 17 221 | mulcomli | ⊢ ( 2 · 8 ) = ; 1 6 |
| 223 | 21 178 42 198 106 25 220 222 | decmul2c | ⊢ ( 2 · ; ; ; ; 2 6 5 2 8 ) = ; ; ; ; 5 3 0 5 6 |
| 224 | 197 223 | breqtri | ⊢ ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ) ≤ ; ; ; ; 5 3 0 5 6 |