Step |
Hyp |
Ref |
Expression |
1 |
|
0le0 |
|- 0 <_ 0 |
2 |
|
risefall0lem |
|- ( 0 ... ( 0 - 1 ) ) = (/) |
3 |
2
|
sumeq1i |
|- sum_ n e. ( 0 ... ( 0 - 1 ) ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) = sum_ n e. (/) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) |
4 |
|
sum0 |
|- sum_ n e. (/) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) = 0 |
5 |
3 4
|
eqtri |
|- sum_ n e. ( 0 ... ( 0 - 1 ) ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) = 0 |
6 |
5
|
oveq2i |
|- ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. sum_ n e. ( 0 ... ( 0 - 1 ) ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) ) = ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. 0 ) |
7 |
|
3cn |
|- 3 e. CC |
8 |
|
7nn0 |
|- 7 e. NN0 |
9 |
|
expcl |
|- ( ( 3 e. CC /\ 7 e. NN0 ) -> ( 3 ^ 7 ) e. CC ) |
10 |
7 8 9
|
mp2an |
|- ( 3 ^ 7 ) e. CC |
11 |
|
5cn |
|- 5 e. CC |
12 |
|
7cn |
|- 7 e. CC |
13 |
11 12
|
mulcli |
|- ( 5 x. 7 ) e. CC |
14 |
10 13
|
mulcli |
|- ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) e. CC |
15 |
14
|
mul01i |
|- ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. 0 ) = 0 |
16 |
6 15
|
eqtri |
|- ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. sum_ n e. ( 0 ... ( 0 - 1 ) ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) ) = 0 |
17 |
|
2cn |
|- 2 e. CC |
18 |
17
|
mul01i |
|- ( 2 x. 0 ) = 0 |
19 |
1 16 18
|
3brtr4i |
|- ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. sum_ n e. ( 0 ... ( 0 - 1 ) ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) ) <_ ( 2 x. 0 ) |
20 |
|
0nn0 |
|- 0 e. NN0 |
21 |
|
2nn0 |
|- 2 e. NN0 |
22 |
|
5nn0 |
|- 5 e. NN0 |
23 |
21 22
|
deccl |
|- ; 2 5 e. NN0 |
24 |
23 22
|
deccl |
|- ; ; 2 5 5 e. NN0 |
25 |
|
1nn0 |
|- 1 e. NN0 |
26 |
24 25
|
deccl |
|- ; ; ; 2 5 5 1 e. NN0 |
27 |
26 22
|
deccl |
|- ; ; ; ; 2 5 5 1 5 e. NN0 |
28 |
|
eqid |
|- ( 0 - 1 ) = ( 0 - 1 ) |
29 |
27
|
nn0cni |
|- ; ; ; ; 2 5 5 1 5 e. CC |
30 |
29
|
addlidi |
|- ( 0 + ; ; ; ; 2 5 5 1 5 ) = ; ; ; ; 2 5 5 1 5 |
31 |
|
3nn0 |
|- 3 e. NN0 |
32 |
7
|
addridi |
|- ( 3 + 0 ) = 3 |
33 |
29
|
mullidi |
|- ( 1 x. ; ; ; ; 2 5 5 1 5 ) = ; ; ; ; 2 5 5 1 5 |
34 |
18
|
oveq1i |
|- ( ( 2 x. 0 ) + 1 ) = ( 0 + 1 ) |
35 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
36 |
34 35
|
eqtri |
|- ( ( 2 x. 0 ) + 1 ) = 1 |
37 |
36
|
oveq1i |
|- ( ( ( 2 x. 0 ) + 1 ) x. ; ; ; ; 2 5 5 1 5 ) = ( 1 x. ; ; ; ; 2 5 5 1 5 ) |
38 |
22 8
|
nn0mulcli |
|- ( 5 x. 7 ) e. NN0 |
39 |
8 21
|
deccl |
|- ; 7 2 e. NN0 |
40 |
|
9nn0 |
|- 9 e. NN0 |
41 |
|
2p1e3 |
|- ( 2 + 1 ) = 3 |
42 |
|
8nn0 |
|- 8 e. NN0 |
43 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
44 |
|
9cn |
|- 9 e. CC |
45 |
|
exp1 |
|- ( 9 e. CC -> ( 9 ^ 1 ) = 9 ) |
46 |
44 45
|
ax-mp |
|- ( 9 ^ 1 ) = 9 |
47 |
46
|
oveq1i |
|- ( ( 9 ^ 1 ) x. 9 ) = ( 9 x. 9 ) |
48 |
|
9t9e81 |
|- ( 9 x. 9 ) = ; 8 1 |
49 |
47 48
|
eqtri |
|- ( ( 9 ^ 1 ) x. 9 ) = ; 8 1 |
50 |
40 25 43 49
|
numexpp1 |
|- ( 9 ^ 2 ) = ; 8 1 |
51 |
|
8cn |
|- 8 e. CC |
52 |
|
9t8e72 |
|- ( 9 x. 8 ) = ; 7 2 |
53 |
44 51 52
|
mulcomli |
|- ( 8 x. 9 ) = ; 7 2 |
54 |
44
|
mullidi |
|- ( 1 x. 9 ) = 9 |
55 |
40 42 25 50 53 54
|
decmul1 |
|- ( ( 9 ^ 2 ) x. 9 ) = ; ; 7 2 9 |
56 |
40 21 41 55
|
numexpp1 |
|- ( 9 ^ 3 ) = ; ; 7 2 9 |
57 |
31 25
|
deccl |
|- ; 3 1 e. NN0 |
58 |
|
eqid |
|- ; 7 2 = ; 7 2 |
59 |
|
eqid |
|- ; 3 1 = ; 3 1 |
60 |
|
7t5e35 |
|- ( 7 x. 5 ) = ; 3 5 |
61 |
12 11 60
|
mulcomli |
|- ( 5 x. 7 ) = ; 3 5 |
62 |
|
7p3e10 |
|- ( 7 + 3 ) = ; 1 0 |
63 |
12 7 62
|
addcomli |
|- ( 3 + 7 ) = ; 1 0 |
64 |
|
ax-1cn |
|- 1 e. CC |
65 |
|
3p1e4 |
|- ( 3 + 1 ) = 4 |
66 |
7 64 65
|
addcomli |
|- ( 1 + 3 ) = 4 |
67 |
66
|
oveq2i |
|- ( ( 3 x. 7 ) + ( 1 + 3 ) ) = ( ( 3 x. 7 ) + 4 ) |
68 |
|
4nn0 |
|- 4 e. NN0 |
69 |
|
7t3e21 |
|- ( 7 x. 3 ) = ; 2 1 |
70 |
12 7 69
|
mulcomli |
|- ( 3 x. 7 ) = ; 2 1 |
71 |
|
4cn |
|- 4 e. CC |
72 |
|
4p1e5 |
|- ( 4 + 1 ) = 5 |
73 |
71 64 72
|
addcomli |
|- ( 1 + 4 ) = 5 |
74 |
21 25 68 70 73
|
decaddi |
|- ( ( 3 x. 7 ) + 4 ) = ; 2 5 |
75 |
67 74
|
eqtri |
|- ( ( 3 x. 7 ) + ( 1 + 3 ) ) = ; 2 5 |
76 |
61
|
oveq1i |
|- ( ( 5 x. 7 ) + 0 ) = ( ; 3 5 + 0 ) |
77 |
31 22
|
deccl |
|- ; 3 5 e. NN0 |
78 |
77
|
nn0cni |
|- ; 3 5 e. CC |
79 |
78
|
addridi |
|- ( ; 3 5 + 0 ) = ; 3 5 |
80 |
76 79
|
eqtri |
|- ( ( 5 x. 7 ) + 0 ) = ; 3 5 |
81 |
31 22 25 20 61 63 8 22 31 75 80
|
decmac |
|- ( ( ( 5 x. 7 ) x. 7 ) + ( 3 + 7 ) ) = ; ; 2 5 5 |
82 |
25
|
dec0h |
|- 1 = ; 0 1 |
83 |
|
3t2e6 |
|- ( 3 x. 2 ) = 6 |
84 |
83 35
|
oveq12i |
|- ( ( 3 x. 2 ) + ( 0 + 1 ) ) = ( 6 + 1 ) |
85 |
|
6p1e7 |
|- ( 6 + 1 ) = 7 |
86 |
84 85
|
eqtri |
|- ( ( 3 x. 2 ) + ( 0 + 1 ) ) = 7 |
87 |
|
5t2e10 |
|- ( 5 x. 2 ) = ; 1 0 |
88 |
25 20 35 87
|
decsuc |
|- ( ( 5 x. 2 ) + 1 ) = ; 1 1 |
89 |
31 22 20 25 61 82 21 25 25 86 88
|
decmac |
|- ( ( ( 5 x. 7 ) x. 2 ) + 1 ) = ; 7 1 |
90 |
8 21 31 25 58 59 38 25 8 81 89
|
decma2c |
|- ( ( ( 5 x. 7 ) x. ; 7 2 ) + ; 3 1 ) = ; ; ; 2 5 5 1 |
91 |
|
9t3e27 |
|- ( 9 x. 3 ) = ; 2 7 |
92 |
44 7 91
|
mulcomli |
|- ( 3 x. 9 ) = ; 2 7 |
93 |
|
7p4e11 |
|- ( 7 + 4 ) = ; 1 1 |
94 |
21 8 68 92 41 25 93
|
decaddci |
|- ( ( 3 x. 9 ) + 4 ) = ; 3 1 |
95 |
|
9t5e45 |
|- ( 9 x. 5 ) = ; 4 5 |
96 |
44 11 95
|
mulcomli |
|- ( 5 x. 9 ) = ; 4 5 |
97 |
40 31 22 61 22 68 94 96
|
decmul1c |
|- ( ( 5 x. 7 ) x. 9 ) = ; ; 3 1 5 |
98 |
38 39 40 56 22 57 90 97
|
decmul2c |
|- ( ( 5 x. 7 ) x. ( 9 ^ 3 ) ) = ; ; ; ; 2 5 5 1 5 |
99 |
33 37 98
|
3eqtr4ri |
|- ( ( 5 x. 7 ) x. ( 9 ^ 3 ) ) = ( ( ( 2 x. 0 ) + 1 ) x. ; ; ; ; 2 5 5 1 5 ) |
100 |
19 20 27 20 28 30 31 32 99
|
log2ublem2 |
|- ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. sum_ n e. ( 0 ... 0 ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) ) <_ ( 2 x. ; ; ; ; 2 5 5 1 5 ) |
101 |
40 68
|
deccl |
|- ; 9 4 e. NN0 |
102 |
101 22
|
deccl |
|- ; ; 9 4 5 e. NN0 |
103 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
104 |
|
eqid |
|- ; ; ; ; 2 5 5 1 5 = ; ; ; ; 2 5 5 1 5 |
105 |
|
eqid |
|- ; ; 9 4 5 = ; ; 9 4 5 |
106 |
|
6nn0 |
|- 6 e. NN0 |
107 |
21 106
|
deccl |
|- ; 2 6 e. NN0 |
108 |
107 68
|
deccl |
|- ; ; 2 6 4 e. NN0 |
109 |
|
5p1e6 |
|- ( 5 + 1 ) = 6 |
110 |
|
eqid |
|- ; ; ; 2 5 5 1 = ; ; ; 2 5 5 1 |
111 |
|
eqid |
|- ; 9 4 = ; 9 4 |
112 |
|
eqid |
|- ; ; 2 5 5 = ; ; 2 5 5 |
113 |
|
eqid |
|- ; 2 5 = ; 2 5 |
114 |
21 22 109 113
|
decsuc |
|- ( ; 2 5 + 1 ) = ; 2 6 |
115 |
|
9p5e14 |
|- ( 9 + 5 ) = ; 1 4 |
116 |
44 11 115
|
addcomli |
|- ( 5 + 9 ) = ; 1 4 |
117 |
23 22 40 112 114 68 116
|
decaddci |
|- ( ; ; 2 5 5 + 9 ) = ; ; 2 6 4 |
118 |
24 25 40 68 110 111 117 73
|
decadd |
|- ( ; ; ; 2 5 5 1 + ; 9 4 ) = ; ; ; 2 6 4 5 |
119 |
108 22 109 118
|
decsuc |
|- ( ( ; ; ; 2 5 5 1 + ; 9 4 ) + 1 ) = ; ; ; 2 6 4 6 |
120 |
|
5p5e10 |
|- ( 5 + 5 ) = ; 1 0 |
121 |
26 22 101 22 104 105 119 120
|
decaddc2 |
|- ( ; ; ; ; 2 5 5 1 5 + ; ; 9 4 5 ) = ; ; ; ; 2 6 4 6 0 |
122 |
44
|
sqvali |
|- ( 9 ^ 2 ) = ( 9 x. 9 ) |
123 |
|
3t3e9 |
|- ( 3 x. 3 ) = 9 |
124 |
123
|
oveq1i |
|- ( ( 3 x. 3 ) x. 9 ) = ( 9 x. 9 ) |
125 |
7 7 44
|
mulassi |
|- ( ( 3 x. 3 ) x. 9 ) = ( 3 x. ( 3 x. 9 ) ) |
126 |
122 124 125
|
3eqtr2i |
|- ( 9 ^ 2 ) = ( 3 x. ( 3 x. 9 ) ) |
127 |
126
|
oveq2i |
|- ( ( 5 x. 7 ) x. ( 9 ^ 2 ) ) = ( ( 5 x. 7 ) x. ( 3 x. ( 3 x. 9 ) ) ) |
128 |
7 44
|
mulcli |
|- ( 3 x. 9 ) e. CC |
129 |
13 7 128
|
mul12i |
|- ( ( 5 x. 7 ) x. ( 3 x. ( 3 x. 9 ) ) ) = ( 3 x. ( ( 5 x. 7 ) x. ( 3 x. 9 ) ) ) |
130 |
21 68
|
deccl |
|- ; 2 4 e. NN0 |
131 |
|
eqid |
|- ; 2 4 = ; 2 4 |
132 |
83 41
|
oveq12i |
|- ( ( 3 x. 2 ) + ( 2 + 1 ) ) = ( 6 + 3 ) |
133 |
|
6p3e9 |
|- ( 6 + 3 ) = 9 |
134 |
132 133
|
eqtri |
|- ( ( 3 x. 2 ) + ( 2 + 1 ) ) = 9 |
135 |
71
|
addlidi |
|- ( 0 + 4 ) = 4 |
136 |
25 20 68 87 135
|
decaddi |
|- ( ( 5 x. 2 ) + 4 ) = ; 1 4 |
137 |
31 22 21 68 61 131 21 68 25 134 136
|
decmac |
|- ( ( ( 5 x. 7 ) x. 2 ) + ; 2 4 ) = ; 9 4 |
138 |
21 25 31 70 66
|
decaddi |
|- ( ( 3 x. 7 ) + 3 ) = ; 2 4 |
139 |
8 31 22 61 22 31 138 61
|
decmul1c |
|- ( ( 5 x. 7 ) x. 7 ) = ; ; 2 4 5 |
140 |
38 21 8 92 22 130 137 139
|
decmul2c |
|- ( ( 5 x. 7 ) x. ( 3 x. 9 ) ) = ; ; 9 4 5 |
141 |
140
|
oveq2i |
|- ( 3 x. ( ( 5 x. 7 ) x. ( 3 x. 9 ) ) ) = ( 3 x. ; ; 9 4 5 ) |
142 |
129 141
|
eqtri |
|- ( ( 5 x. 7 ) x. ( 3 x. ( 3 x. 9 ) ) ) = ( 3 x. ; ; 9 4 5 ) |
143 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
144 |
17
|
mulridi |
|- ( 2 x. 1 ) = 2 |
145 |
144
|
oveq1i |
|- ( ( 2 x. 1 ) + 1 ) = ( 2 + 1 ) |
146 |
143 145
|
eqtr4i |
|- 3 = ( ( 2 x. 1 ) + 1 ) |
147 |
146
|
oveq1i |
|- ( 3 x. ; ; 9 4 5 ) = ( ( ( 2 x. 1 ) + 1 ) x. ; ; 9 4 5 ) |
148 |
127 142 147
|
3eqtri |
|- ( ( 5 x. 7 ) x. ( 9 ^ 2 ) ) = ( ( ( 2 x. 1 ) + 1 ) x. ; ; 9 4 5 ) |
149 |
100 27 102 25 103 121 21 41 148
|
log2ublem2 |
|- ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. sum_ n e. ( 0 ... 1 ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) ) <_ ( 2 x. ; ; ; ; 2 6 4 6 0 ) |
150 |
108 106
|
deccl |
|- ; ; ; 2 6 4 6 e. NN0 |
151 |
150 20
|
deccl |
|- ; ; ; ; 2 6 4 6 0 e. NN0 |
152 |
106 31
|
deccl |
|- ; 6 3 e. NN0 |
153 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
154 |
|
eqid |
|- ; ; ; ; 2 6 4 6 0 = ; ; ; ; 2 6 4 6 0 |
155 |
|
eqid |
|- ; 6 3 = ; 6 3 |
156 |
|
eqid |
|- ; ; ; 2 6 4 6 = ; ; ; 2 6 4 6 |
157 |
|
eqid |
|- ; ; 2 6 4 = ; ; 2 6 4 |
158 |
107 68 72 157
|
decsuc |
|- ( ; ; 2 6 4 + 1 ) = ; ; 2 6 5 |
159 |
|
6p6e12 |
|- ( 6 + 6 ) = ; 1 2 |
160 |
108 106 106 156 158 21 159
|
decaddci |
|- ( ; ; ; 2 6 4 6 + 6 ) = ; ; ; 2 6 5 2 |
161 |
7
|
addlidi |
|- ( 0 + 3 ) = 3 |
162 |
150 20 106 31 154 155 160 161
|
decadd |
|- ( ; ; ; ; 2 6 4 6 0 + ; 6 3 ) = ; ; ; ; 2 6 5 2 3 |
163 |
|
1p2e3 |
|- ( 1 + 2 ) = 3 |
164 |
46
|
oveq2i |
|- ( ( 5 x. 7 ) x. ( 9 ^ 1 ) ) = ( ( 5 x. 7 ) x. 9 ) |
165 |
11 12 44
|
mulassi |
|- ( ( 5 x. 7 ) x. 9 ) = ( 5 x. ( 7 x. 9 ) ) |
166 |
|
9t7e63 |
|- ( 9 x. 7 ) = ; 6 3 |
167 |
44 12 166
|
mulcomli |
|- ( 7 x. 9 ) = ; 6 3 |
168 |
167
|
oveq2i |
|- ( 5 x. ( 7 x. 9 ) ) = ( 5 x. ; 6 3 ) |
169 |
165 168
|
eqtri |
|- ( ( 5 x. 7 ) x. 9 ) = ( 5 x. ; 6 3 ) |
170 |
|
df-5 |
|- 5 = ( 4 + 1 ) |
171 |
|
2t2e4 |
|- ( 2 x. 2 ) = 4 |
172 |
171
|
oveq1i |
|- ( ( 2 x. 2 ) + 1 ) = ( 4 + 1 ) |
173 |
170 172
|
eqtr4i |
|- 5 = ( ( 2 x. 2 ) + 1 ) |
174 |
173
|
oveq1i |
|- ( 5 x. ; 6 3 ) = ( ( ( 2 x. 2 ) + 1 ) x. ; 6 3 ) |
175 |
164 169 174
|
3eqtri |
|- ( ( 5 x. 7 ) x. ( 9 ^ 1 ) ) = ( ( ( 2 x. 2 ) + 1 ) x. ; 6 3 ) |
176 |
149 151 152 21 153 162 25 163 175
|
log2ublem2 |
|- ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. sum_ n e. ( 0 ... 2 ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) ) <_ ( 2 x. ; ; ; ; 2 6 5 2 3 ) |
177 |
107 22
|
deccl |
|- ; ; 2 6 5 e. NN0 |
178 |
177 21
|
deccl |
|- ; ; ; 2 6 5 2 e. NN0 |
179 |
178 31
|
deccl |
|- ; ; ; ; 2 6 5 2 3 e. NN0 |
180 |
|
3m1e2 |
|- ( 3 - 1 ) = 2 |
181 |
|
eqid |
|- ; ; ; ; 2 6 5 2 3 = ; ; ; ; 2 6 5 2 3 |
182 |
|
5p3e8 |
|- ( 5 + 3 ) = 8 |
183 |
11 7 182
|
addcomli |
|- ( 3 + 5 ) = 8 |
184 |
178 31 22 181 183
|
decaddi |
|- ( ; ; ; ; 2 6 5 2 3 + 5 ) = ; ; ; ; 2 6 5 2 8 |
185 |
12 11
|
mulcli |
|- ( 7 x. 5 ) e. CC |
186 |
185
|
mulridi |
|- ( ( 7 x. 5 ) x. 1 ) = ( 7 x. 5 ) |
187 |
11 12
|
mulcomi |
|- ( 5 x. 7 ) = ( 7 x. 5 ) |
188 |
|
exp0 |
|- ( 9 e. CC -> ( 9 ^ 0 ) = 1 ) |
189 |
44 188
|
ax-mp |
|- ( 9 ^ 0 ) = 1 |
190 |
187 189
|
oveq12i |
|- ( ( 5 x. 7 ) x. ( 9 ^ 0 ) ) = ( ( 7 x. 5 ) x. 1 ) |
191 |
7 17 83
|
mulcomli |
|- ( 2 x. 3 ) = 6 |
192 |
191
|
oveq1i |
|- ( ( 2 x. 3 ) + 1 ) = ( 6 + 1 ) |
193 |
|
df-7 |
|- 7 = ( 6 + 1 ) |
194 |
192 193
|
eqtr4i |
|- ( ( 2 x. 3 ) + 1 ) = 7 |
195 |
194
|
oveq1i |
|- ( ( ( 2 x. 3 ) + 1 ) x. 5 ) = ( 7 x. 5 ) |
196 |
186 190 195
|
3eqtr4i |
|- ( ( 5 x. 7 ) x. ( 9 ^ 0 ) ) = ( ( ( 2 x. 3 ) + 1 ) x. 5 ) |
197 |
176 179 22 31 180 184 20 161 196
|
log2ublem2 |
|- ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. sum_ n e. ( 0 ... 3 ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) ) <_ ( 2 x. ; ; ; ; 2 6 5 2 8 ) |
198 |
|
eqid |
|- ; ; ; ; 2 6 5 2 8 = ; ; ; ; 2 6 5 2 8 |
199 |
|
eqid |
|- ; ; ; 2 6 5 2 = ; ; ; 2 6 5 2 |
200 |
|
eqid |
|- ; ; 2 6 5 = ; ; 2 6 5 |
201 |
|
00id |
|- ( 0 + 0 ) = 0 |
202 |
20
|
dec0h |
|- 0 = ; 0 0 |
203 |
201 202
|
eqtri |
|- ( 0 + 0 ) = ; 0 0 |
204 |
|
eqid |
|- ; 2 6 = ; 2 6 |
205 |
35 82
|
eqtri |
|- ( 0 + 1 ) = ; 0 1 |
206 |
171 35
|
oveq12i |
|- ( ( 2 x. 2 ) + ( 0 + 1 ) ) = ( 4 + 1 ) |
207 |
206 72
|
eqtri |
|- ( ( 2 x. 2 ) + ( 0 + 1 ) ) = 5 |
208 |
|
6cn |
|- 6 e. CC |
209 |
|
6t2e12 |
|- ( 6 x. 2 ) = ; 1 2 |
210 |
208 17 209
|
mulcomli |
|- ( 2 x. 6 ) = ; 1 2 |
211 |
25 21 41 210
|
decsuc |
|- ( ( 2 x. 6 ) + 1 ) = ; 1 3 |
212 |
21 106 20 25 204 205 21 31 25 207 211
|
decma2c |
|- ( ( 2 x. ; 2 6 ) + ( 0 + 1 ) ) = ; 5 3 |
213 |
11 17 87
|
mulcomli |
|- ( 2 x. 5 ) = ; 1 0 |
214 |
213
|
oveq1i |
|- ( ( 2 x. 5 ) + 0 ) = ( ; 1 0 + 0 ) |
215 |
|
dec10p |
|- ( ; 1 0 + 0 ) = ; 1 0 |
216 |
214 215
|
eqtri |
|- ( ( 2 x. 5 ) + 0 ) = ; 1 0 |
217 |
107 22 20 20 200 203 21 20 25 212 216
|
decma2c |
|- ( ( 2 x. ; ; 2 6 5 ) + ( 0 + 0 ) ) = ; ; 5 3 0 |
218 |
22
|
dec0h |
|- 5 = ; 0 5 |
219 |
172 72 218
|
3eqtri |
|- ( ( 2 x. 2 ) + 1 ) = ; 0 5 |
220 |
177 21 20 25 199 82 21 22 20 217 219
|
decma2c |
|- ( ( 2 x. ; ; ; 2 6 5 2 ) + 1 ) = ; ; ; 5 3 0 5 |
221 |
|
8t2e16 |
|- ( 8 x. 2 ) = ; 1 6 |
222 |
51 17 221
|
mulcomli |
|- ( 2 x. 8 ) = ; 1 6 |
223 |
21 178 42 198 106 25 220 222
|
decmul2c |
|- ( 2 x. ; ; ; ; 2 6 5 2 8 ) = ; ; ; ; 5 3 0 5 6 |
224 |
197 223
|
breqtri |
|- ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. sum_ n e. ( 0 ... 3 ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) ) <_ ; ; ; ; 5 3 0 5 6 |