Step |
Hyp |
Ref |
Expression |
1 |
|
log2ublem2.1 |
|- ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. sum_ n e. ( 0 ... K ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) ) <_ ( 2 x. B ) |
2 |
|
log2ublem2.2 |
|- B e. NN0 |
3 |
|
log2ublem2.3 |
|- F e. NN0 |
4 |
|
log2ublem2.4 |
|- N e. NN0 |
5 |
|
log2ublem2.5 |
|- ( N - 1 ) = K |
6 |
|
log2ublem2.6 |
|- ( B + F ) = G |
7 |
|
log2ublem2.7 |
|- M e. NN0 |
8 |
|
log2ublem2.8 |
|- ( M + N ) = 3 |
9 |
|
log2ublem2.9 |
|- ( ( 5 x. 7 ) x. ( 9 ^ M ) ) = ( ( ( 2 x. N ) + 1 ) x. F ) |
10 |
|
fzfid |
|- ( T. -> ( 0 ... K ) e. Fin ) |
11 |
|
elfznn0 |
|- ( n e. ( 0 ... K ) -> n e. NN0 ) |
12 |
11
|
adantl |
|- ( ( T. /\ n e. ( 0 ... K ) ) -> n e. NN0 ) |
13 |
|
2re |
|- 2 e. RR |
14 |
|
3nn |
|- 3 e. NN |
15 |
|
2nn0 |
|- 2 e. NN0 |
16 |
|
nn0mulcl |
|- ( ( 2 e. NN0 /\ n e. NN0 ) -> ( 2 x. n ) e. NN0 ) |
17 |
15 16
|
mpan |
|- ( n e. NN0 -> ( 2 x. n ) e. NN0 ) |
18 |
|
nn0p1nn |
|- ( ( 2 x. n ) e. NN0 -> ( ( 2 x. n ) + 1 ) e. NN ) |
19 |
17 18
|
syl |
|- ( n e. NN0 -> ( ( 2 x. n ) + 1 ) e. NN ) |
20 |
|
nnmulcl |
|- ( ( 3 e. NN /\ ( ( 2 x. n ) + 1 ) e. NN ) -> ( 3 x. ( ( 2 x. n ) + 1 ) ) e. NN ) |
21 |
14 19 20
|
sylancr |
|- ( n e. NN0 -> ( 3 x. ( ( 2 x. n ) + 1 ) ) e. NN ) |
22 |
|
9nn |
|- 9 e. NN |
23 |
|
nnexpcl |
|- ( ( 9 e. NN /\ n e. NN0 ) -> ( 9 ^ n ) e. NN ) |
24 |
22 23
|
mpan |
|- ( n e. NN0 -> ( 9 ^ n ) e. NN ) |
25 |
21 24
|
nnmulcld |
|- ( n e. NN0 -> ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) e. NN ) |
26 |
|
nndivre |
|- ( ( 2 e. RR /\ ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) e. NN ) -> ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) e. RR ) |
27 |
13 25 26
|
sylancr |
|- ( n e. NN0 -> ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) e. RR ) |
28 |
12 27
|
syl |
|- ( ( T. /\ n e. ( 0 ... K ) ) -> ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) e. RR ) |
29 |
10 28
|
fsumrecl |
|- ( T. -> sum_ n e. ( 0 ... K ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) e. RR ) |
30 |
29
|
mptru |
|- sum_ n e. ( 0 ... K ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) e. RR |
31 |
15 4
|
nn0mulcli |
|- ( 2 x. N ) e. NN0 |
32 |
|
nn0p1nn |
|- ( ( 2 x. N ) e. NN0 -> ( ( 2 x. N ) + 1 ) e. NN ) |
33 |
31 32
|
ax-mp |
|- ( ( 2 x. N ) + 1 ) e. NN |
34 |
14 33
|
nnmulcli |
|- ( 3 x. ( ( 2 x. N ) + 1 ) ) e. NN |
35 |
|
nnexpcl |
|- ( ( 9 e. NN /\ N e. NN0 ) -> ( 9 ^ N ) e. NN ) |
36 |
22 4 35
|
mp2an |
|- ( 9 ^ N ) e. NN |
37 |
34 36
|
nnmulcli |
|- ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) e. NN |
38 |
15 2
|
nn0mulcli |
|- ( 2 x. B ) e. NN0 |
39 |
15 3
|
nn0mulcli |
|- ( 2 x. F ) e. NN0 |
40 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
41 |
4 40
|
eleqtri |
|- N e. ( ZZ>= ` 0 ) |
42 |
41
|
a1i |
|- ( T. -> N e. ( ZZ>= ` 0 ) ) |
43 |
|
elfznn0 |
|- ( n e. ( 0 ... N ) -> n e. NN0 ) |
44 |
43
|
adantl |
|- ( ( T. /\ n e. ( 0 ... N ) ) -> n e. NN0 ) |
45 |
27
|
recnd |
|- ( n e. NN0 -> ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) e. CC ) |
46 |
44 45
|
syl |
|- ( ( T. /\ n e. ( 0 ... N ) ) -> ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) e. CC ) |
47 |
|
oveq2 |
|- ( n = N -> ( 2 x. n ) = ( 2 x. N ) ) |
48 |
47
|
oveq1d |
|- ( n = N -> ( ( 2 x. n ) + 1 ) = ( ( 2 x. N ) + 1 ) ) |
49 |
48
|
oveq2d |
|- ( n = N -> ( 3 x. ( ( 2 x. n ) + 1 ) ) = ( 3 x. ( ( 2 x. N ) + 1 ) ) ) |
50 |
|
oveq2 |
|- ( n = N -> ( 9 ^ n ) = ( 9 ^ N ) ) |
51 |
49 50
|
oveq12d |
|- ( n = N -> ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) = ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) ) |
52 |
51
|
oveq2d |
|- ( n = N -> ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) = ( 2 / ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) ) ) |
53 |
42 46 52
|
fsumm1 |
|- ( T. -> sum_ n e. ( 0 ... N ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) = ( sum_ n e. ( 0 ... ( N - 1 ) ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) + ( 2 / ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) ) ) ) |
54 |
53
|
mptru |
|- sum_ n e. ( 0 ... N ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) = ( sum_ n e. ( 0 ... ( N - 1 ) ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) + ( 2 / ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) ) ) |
55 |
5
|
oveq2i |
|- ( 0 ... ( N - 1 ) ) = ( 0 ... K ) |
56 |
55
|
sumeq1i |
|- sum_ n e. ( 0 ... ( N - 1 ) ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) = sum_ n e. ( 0 ... K ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) |
57 |
56
|
oveq1i |
|- ( sum_ n e. ( 0 ... ( N - 1 ) ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) + ( 2 / ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) ) ) = ( sum_ n e. ( 0 ... K ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) + ( 2 / ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) ) ) |
58 |
54 57
|
eqtri |
|- sum_ n e. ( 0 ... N ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) = ( sum_ n e. ( 0 ... K ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) + ( 2 / ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) ) ) |
59 |
|
2cn |
|- 2 e. CC |
60 |
2
|
nn0cni |
|- B e. CC |
61 |
3
|
nn0cni |
|- F e. CC |
62 |
59 60 61
|
adddii |
|- ( 2 x. ( B + F ) ) = ( ( 2 x. B ) + ( 2 x. F ) ) |
63 |
6
|
oveq2i |
|- ( 2 x. ( B + F ) ) = ( 2 x. G ) |
64 |
62 63
|
eqtr3i |
|- ( ( 2 x. B ) + ( 2 x. F ) ) = ( 2 x. G ) |
65 |
|
7nn |
|- 7 e. NN |
66 |
65
|
nnnn0i |
|- 7 e. NN0 |
67 |
|
nnexpcl |
|- ( ( 3 e. NN /\ 7 e. NN0 ) -> ( 3 ^ 7 ) e. NN ) |
68 |
14 66 67
|
mp2an |
|- ( 3 ^ 7 ) e. NN |
69 |
|
5nn |
|- 5 e. NN |
70 |
69 65
|
nnmulcli |
|- ( 5 x. 7 ) e. NN |
71 |
68 70
|
nnmulcli |
|- ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) e. NN |
72 |
71
|
nnrei |
|- ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) e. RR |
73 |
72 13
|
remulcli |
|- ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. 2 ) e. RR |
74 |
73
|
leidi |
|- ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. 2 ) <_ ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. 2 ) |
75 |
14
|
nnnn0i |
|- 3 e. NN0 |
76 |
|
nnexpcl |
|- ( ( 9 e. NN /\ 3 e. NN0 ) -> ( 9 ^ 3 ) e. NN ) |
77 |
22 75 76
|
mp2an |
|- ( 9 ^ 3 ) e. NN |
78 |
77
|
nncni |
|- ( 9 ^ 3 ) e. CC |
79 |
70
|
nncni |
|- ( 5 x. 7 ) e. CC |
80 |
78 79
|
mulcomi |
|- ( ( 9 ^ 3 ) x. ( 5 x. 7 ) ) = ( ( 5 x. 7 ) x. ( 9 ^ 3 ) ) |
81 |
7
|
nn0cni |
|- M e. CC |
82 |
4
|
nn0cni |
|- N e. CC |
83 |
81 82
|
addcomi |
|- ( M + N ) = ( N + M ) |
84 |
8 83
|
eqtr3i |
|- 3 = ( N + M ) |
85 |
84
|
oveq2i |
|- ( 9 ^ 3 ) = ( 9 ^ ( N + M ) ) |
86 |
22
|
nncni |
|- 9 e. CC |
87 |
|
expadd |
|- ( ( 9 e. CC /\ N e. NN0 /\ M e. NN0 ) -> ( 9 ^ ( N + M ) ) = ( ( 9 ^ N ) x. ( 9 ^ M ) ) ) |
88 |
86 4 7 87
|
mp3an |
|- ( 9 ^ ( N + M ) ) = ( ( 9 ^ N ) x. ( 9 ^ M ) ) |
89 |
85 88
|
eqtri |
|- ( 9 ^ 3 ) = ( ( 9 ^ N ) x. ( 9 ^ M ) ) |
90 |
89
|
oveq2i |
|- ( ( 5 x. 7 ) x. ( 9 ^ 3 ) ) = ( ( 5 x. 7 ) x. ( ( 9 ^ N ) x. ( 9 ^ M ) ) ) |
91 |
36
|
nncni |
|- ( 9 ^ N ) e. CC |
92 |
|
nnexpcl |
|- ( ( 9 e. NN /\ M e. NN0 ) -> ( 9 ^ M ) e. NN ) |
93 |
22 7 92
|
mp2an |
|- ( 9 ^ M ) e. NN |
94 |
93
|
nncni |
|- ( 9 ^ M ) e. CC |
95 |
79 91 94
|
mul12i |
|- ( ( 5 x. 7 ) x. ( ( 9 ^ N ) x. ( 9 ^ M ) ) ) = ( ( 9 ^ N ) x. ( ( 5 x. 7 ) x. ( 9 ^ M ) ) ) |
96 |
80 90 95
|
3eqtri |
|- ( ( 9 ^ 3 ) x. ( 5 x. 7 ) ) = ( ( 9 ^ N ) x. ( ( 5 x. 7 ) x. ( 9 ^ M ) ) ) |
97 |
9
|
oveq2i |
|- ( ( 9 ^ N ) x. ( ( 5 x. 7 ) x. ( 9 ^ M ) ) ) = ( ( 9 ^ N ) x. ( ( ( 2 x. N ) + 1 ) x. F ) ) |
98 |
96 97
|
eqtri |
|- ( ( 9 ^ 3 ) x. ( 5 x. 7 ) ) = ( ( 9 ^ N ) x. ( ( ( 2 x. N ) + 1 ) x. F ) ) |
99 |
98
|
oveq2i |
|- ( 3 x. ( ( 9 ^ 3 ) x. ( 5 x. 7 ) ) ) = ( 3 x. ( ( 9 ^ N ) x. ( ( ( 2 x. N ) + 1 ) x. F ) ) ) |
100 |
|
df-7 |
|- 7 = ( 6 + 1 ) |
101 |
100
|
oveq2i |
|- ( 3 ^ 7 ) = ( 3 ^ ( 6 + 1 ) ) |
102 |
|
3cn |
|- 3 e. CC |
103 |
|
6nn0 |
|- 6 e. NN0 |
104 |
|
expp1 |
|- ( ( 3 e. CC /\ 6 e. NN0 ) -> ( 3 ^ ( 6 + 1 ) ) = ( ( 3 ^ 6 ) x. 3 ) ) |
105 |
102 103 104
|
mp2an |
|- ( 3 ^ ( 6 + 1 ) ) = ( ( 3 ^ 6 ) x. 3 ) |
106 |
|
expmul |
|- ( ( 3 e. CC /\ 2 e. NN0 /\ 3 e. NN0 ) -> ( 3 ^ ( 2 x. 3 ) ) = ( ( 3 ^ 2 ) ^ 3 ) ) |
107 |
102 15 75 106
|
mp3an |
|- ( 3 ^ ( 2 x. 3 ) ) = ( ( 3 ^ 2 ) ^ 3 ) |
108 |
59 102
|
mulcomi |
|- ( 2 x. 3 ) = ( 3 x. 2 ) |
109 |
|
3t2e6 |
|- ( 3 x. 2 ) = 6 |
110 |
108 109
|
eqtri |
|- ( 2 x. 3 ) = 6 |
111 |
110
|
oveq2i |
|- ( 3 ^ ( 2 x. 3 ) ) = ( 3 ^ 6 ) |
112 |
|
sq3 |
|- ( 3 ^ 2 ) = 9 |
113 |
112
|
oveq1i |
|- ( ( 3 ^ 2 ) ^ 3 ) = ( 9 ^ 3 ) |
114 |
107 111 113
|
3eqtr3i |
|- ( 3 ^ 6 ) = ( 9 ^ 3 ) |
115 |
114
|
oveq1i |
|- ( ( 3 ^ 6 ) x. 3 ) = ( ( 9 ^ 3 ) x. 3 ) |
116 |
105 115
|
eqtri |
|- ( 3 ^ ( 6 + 1 ) ) = ( ( 9 ^ 3 ) x. 3 ) |
117 |
78 102
|
mulcomi |
|- ( ( 9 ^ 3 ) x. 3 ) = ( 3 x. ( 9 ^ 3 ) ) |
118 |
101 116 117
|
3eqtri |
|- ( 3 ^ 7 ) = ( 3 x. ( 9 ^ 3 ) ) |
119 |
118
|
oveq1i |
|- ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) = ( ( 3 x. ( 9 ^ 3 ) ) x. ( 5 x. 7 ) ) |
120 |
102 78 79
|
mulassi |
|- ( ( 3 x. ( 9 ^ 3 ) ) x. ( 5 x. 7 ) ) = ( 3 x. ( ( 9 ^ 3 ) x. ( 5 x. 7 ) ) ) |
121 |
119 120
|
eqtri |
|- ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) = ( 3 x. ( ( 9 ^ 3 ) x. ( 5 x. 7 ) ) ) |
122 |
33
|
nncni |
|- ( ( 2 x. N ) + 1 ) e. CC |
123 |
102 122 91
|
mul32i |
|- ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) = ( ( 3 x. ( 9 ^ N ) ) x. ( ( 2 x. N ) + 1 ) ) |
124 |
123
|
oveq1i |
|- ( ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) x. F ) = ( ( ( 3 x. ( 9 ^ N ) ) x. ( ( 2 x. N ) + 1 ) ) x. F ) |
125 |
102 91
|
mulcli |
|- ( 3 x. ( 9 ^ N ) ) e. CC |
126 |
125 122 61
|
mulassi |
|- ( ( ( 3 x. ( 9 ^ N ) ) x. ( ( 2 x. N ) + 1 ) ) x. F ) = ( ( 3 x. ( 9 ^ N ) ) x. ( ( ( 2 x. N ) + 1 ) x. F ) ) |
127 |
122 61
|
mulcli |
|- ( ( ( 2 x. N ) + 1 ) x. F ) e. CC |
128 |
102 91 127
|
mulassi |
|- ( ( 3 x. ( 9 ^ N ) ) x. ( ( ( 2 x. N ) + 1 ) x. F ) ) = ( 3 x. ( ( 9 ^ N ) x. ( ( ( 2 x. N ) + 1 ) x. F ) ) ) |
129 |
124 126 128
|
3eqtri |
|- ( ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) x. F ) = ( 3 x. ( ( 9 ^ N ) x. ( ( ( 2 x. N ) + 1 ) x. F ) ) ) |
130 |
99 121 129
|
3eqtr4i |
|- ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) = ( ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) x. F ) |
131 |
130
|
oveq2i |
|- ( 2 x. ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) ) = ( 2 x. ( ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) x. F ) ) |
132 |
68
|
nncni |
|- ( 3 ^ 7 ) e. CC |
133 |
132 79
|
mulcli |
|- ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) e. CC |
134 |
133 59
|
mulcomi |
|- ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. 2 ) = ( 2 x. ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) ) |
135 |
37
|
nncni |
|- ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) e. CC |
136 |
135 59 61
|
mul12i |
|- ( ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) x. ( 2 x. F ) ) = ( 2 x. ( ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) x. F ) ) |
137 |
131 134 136
|
3eqtr4i |
|- ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. 2 ) = ( ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) x. ( 2 x. F ) ) |
138 |
74 137
|
breqtri |
|- ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. 2 ) <_ ( ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) x. ( 2 x. F ) ) |
139 |
1 30 15 37 38 39 58 64 138
|
log2ublem1 |
|- ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. sum_ n e. ( 0 ... N ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) ) <_ ( 2 x. G ) |