| Step |
Hyp |
Ref |
Expression |
| 1 |
|
log2ublem1.1 |
|- ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. A ) <_ B |
| 2 |
|
log2ublem1.2 |
|- A e. RR |
| 3 |
|
log2ublem1.3 |
|- D e. NN0 |
| 4 |
|
log2ublem1.4 |
|- E e. NN |
| 5 |
|
log2ublem1.5 |
|- B e. NN0 |
| 6 |
|
log2ublem1.6 |
|- F e. NN0 |
| 7 |
|
log2ublem1.7 |
|- C = ( A + ( D / E ) ) |
| 8 |
|
log2ublem1.8 |
|- ( B + F ) = G |
| 9 |
|
log2ublem1.9 |
|- ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. D ) <_ ( E x. F ) |
| 10 |
|
3nn |
|- 3 e. NN |
| 11 |
|
7nn0 |
|- 7 e. NN0 |
| 12 |
|
nnexpcl |
|- ( ( 3 e. NN /\ 7 e. NN0 ) -> ( 3 ^ 7 ) e. NN ) |
| 13 |
10 11 12
|
mp2an |
|- ( 3 ^ 7 ) e. NN |
| 14 |
|
5nn |
|- 5 e. NN |
| 15 |
|
7nn |
|- 7 e. NN |
| 16 |
14 15
|
nnmulcli |
|- ( 5 x. 7 ) e. NN |
| 17 |
13 16
|
nnmulcli |
|- ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) e. NN |
| 18 |
17
|
nncni |
|- ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) e. CC |
| 19 |
3
|
nn0cni |
|- D e. CC |
| 20 |
4
|
nncni |
|- E e. CC |
| 21 |
4
|
nnne0i |
|- E =/= 0 |
| 22 |
18 19 20 21
|
divassi |
|- ( ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. D ) / E ) = ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. ( D / E ) ) |
| 23 |
|
3nn0 |
|- 3 e. NN0 |
| 24 |
23 11
|
nn0expcli |
|- ( 3 ^ 7 ) e. NN0 |
| 25 |
|
5nn0 |
|- 5 e. NN0 |
| 26 |
25 11
|
nn0mulcli |
|- ( 5 x. 7 ) e. NN0 |
| 27 |
24 26
|
nn0mulcli |
|- ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) e. NN0 |
| 28 |
27 3
|
nn0mulcli |
|- ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. D ) e. NN0 |
| 29 |
28
|
nn0rei |
|- ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. D ) e. RR |
| 30 |
6
|
nn0rei |
|- F e. RR |
| 31 |
4
|
nnrei |
|- E e. RR |
| 32 |
4
|
nngt0i |
|- 0 < E |
| 33 |
31 32
|
pm3.2i |
|- ( E e. RR /\ 0 < E ) |
| 34 |
|
ledivmul |
|- ( ( ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. D ) e. RR /\ F e. RR /\ ( E e. RR /\ 0 < E ) ) -> ( ( ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. D ) / E ) <_ F <-> ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. D ) <_ ( E x. F ) ) ) |
| 35 |
29 30 33 34
|
mp3an |
|- ( ( ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. D ) / E ) <_ F <-> ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. D ) <_ ( E x. F ) ) |
| 36 |
9 35
|
mpbir |
|- ( ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. D ) / E ) <_ F |
| 37 |
22 36
|
eqbrtrri |
|- ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. ( D / E ) ) <_ F |
| 38 |
17
|
nnrei |
|- ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) e. RR |
| 39 |
38 2
|
remulcli |
|- ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. A ) e. RR |
| 40 |
3
|
nn0rei |
|- D e. RR |
| 41 |
|
nndivre |
|- ( ( D e. RR /\ E e. NN ) -> ( D / E ) e. RR ) |
| 42 |
40 4 41
|
mp2an |
|- ( D / E ) e. RR |
| 43 |
38 42
|
remulcli |
|- ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. ( D / E ) ) e. RR |
| 44 |
5
|
nn0rei |
|- B e. RR |
| 45 |
39 43 44 30
|
le2addi |
|- ( ( ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. A ) <_ B /\ ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. ( D / E ) ) <_ F ) -> ( ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. A ) + ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. ( D / E ) ) ) <_ ( B + F ) ) |
| 46 |
1 37 45
|
mp2an |
|- ( ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. A ) + ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. ( D / E ) ) ) <_ ( B + F ) |
| 47 |
7
|
oveq2i |
|- ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. C ) = ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. ( A + ( D / E ) ) ) |
| 48 |
2
|
recni |
|- A e. CC |
| 49 |
42
|
recni |
|- ( D / E ) e. CC |
| 50 |
18 48 49
|
adddii |
|- ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. ( A + ( D / E ) ) ) = ( ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. A ) + ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. ( D / E ) ) ) |
| 51 |
47 50
|
eqtr2i |
|- ( ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. A ) + ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. ( D / E ) ) ) = ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. C ) |
| 52 |
46 51 8
|
3brtr3i |
|- ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. C ) <_ G |