| Step |
Hyp |
Ref |
Expression |
| 1 |
|
log2ub |
|
| 2 |
|
2nn0 |
|
| 3 |
|
3nn0 |
|
| 4 |
|
5nn0 |
|
| 5 |
|
6nn0 |
|
| 6 |
|
2lt3 |
|
| 7 |
|
5lt10 |
|
| 8 |
|
3lt10 |
|
| 9 |
2 3 4 5 3 4 6 7 8
|
3decltc |
|
| 10 |
2 4
|
deccl |
|
| 11 |
10 3
|
deccl |
|
| 12 |
11
|
nn0rei |
|
| 13 |
3 5
|
deccl |
|
| 14 |
13 4
|
deccl |
|
| 15 |
14
|
nn0rei |
|
| 16 |
|
6nn |
|
| 17 |
3 16
|
decnncl |
|
| 18 |
|
0nn0 |
|
| 19 |
|
10pos |
|
| 20 |
17 4 18 19
|
declti |
|
| 21 |
12 15 15 20
|
ltdiv1ii |
|
| 22 |
9 21
|
mpbi |
|
| 23 |
15
|
recni |
|
| 24 |
|
0re |
|
| 25 |
24 20
|
gtneii |
|
| 26 |
23 25
|
dividi |
|
| 27 |
22 26
|
breqtri |
|
| 28 |
|
2rp |
|
| 29 |
|
relogcl |
|
| 30 |
28 29
|
ax-mp |
|
| 31 |
12 15 25
|
redivcli |
|
| 32 |
|
1re |
|
| 33 |
30 31 32
|
lttri |
|
| 34 |
1 27 33
|
mp2an |
|