Metamath Proof Explorer


Theorem birthdaylem1

Description: Lemma for birthday . (Contributed by Mario Carneiro, 17-Apr-2015)

Ref Expression
Hypotheses birthday.s S=f|f:1K1N
birthday.t T=f|f:1K1-11N
Assertion birthdaylem1 TSSFinNS

Proof

Step Hyp Ref Expression
1 birthday.s S=f|f:1K1N
2 birthday.t T=f|f:1K1-11N
3 f1f f:1K1-11Nf:1K1N
4 3 ss2abi f|f:1K1-11Nf|f:1K1N
5 4 2 1 3sstr4i TS
6 fzfi 1NFin
7 fzfi 1KFin
8 mapvalg 1NFin1KFin1N1K=f|f:1K1N
9 6 7 8 mp2an 1N1K=f|f:1K1N
10 1 9 eqtr4i S=1N1K
11 mapfi 1NFin1KFin1N1KFin
12 6 7 11 mp2an 1N1KFin
13 10 12 eqeltri SFin
14 elfz1end NN1N
15 ne0i N1N1N
16 14 15 sylbi N1N
17 10 eqeq1i S=1N1K=
18 ovex 1NV
19 ovex 1KV
20 18 19 map0 1N1K=1N=1K
21 20 simplbi 1N1K=1N=
22 17 21 sylbi S=1N=
23 22 necon3i 1NS
24 16 23 syl NS
25 5 13 24 3pm3.2i TSSFinNS