Metamath Proof Explorer
		
		
		
		Description:  Closure of the decimal point in the positive real numbers.  (Contributed by Thierry Arnoux, 16-Dec-2021)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | rpdpcl.a | ⊢ 𝐴  ∈  ℕ0 | 
					
						|  |  | rpdpcl.b | ⊢ 𝐵  ∈  ℝ+ | 
				
					|  | Assertion | rpdpcl | ⊢  ( 𝐴 . 𝐵 )  ∈  ℝ+ | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpdpcl.a | ⊢ 𝐴  ∈  ℕ0 | 
						
							| 2 |  | rpdpcl.b | ⊢ 𝐵  ∈  ℝ+ | 
						
							| 3 | 1 2 | dpval3rp | ⊢ ( 𝐴 . 𝐵 )  =  _ 𝐴 𝐵 | 
						
							| 4 | 1 2 | rpdp2cl | ⊢ _ 𝐴 𝐵  ∈  ℝ+ | 
						
							| 5 | 3 4 | eqeltri | ⊢ ( 𝐴 . 𝐵 )  ∈  ℝ+ |