Metamath Proof Explorer
Description: Closure of the decimal point in the positive real numbers. (Contributed by Thierry Arnoux, 16-Dec-2021)
|
|
Ref |
Expression |
|
Hypotheses |
rpdpcl.a |
⊢ 𝐴 ∈ ℕ0 |
|
|
rpdpcl.b |
⊢ 𝐵 ∈ ℝ+ |
|
Assertion |
rpdpcl |
⊢ ( 𝐴 . 𝐵 ) ∈ ℝ+ |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
rpdpcl.a |
⊢ 𝐴 ∈ ℕ0 |
2 |
|
rpdpcl.b |
⊢ 𝐵 ∈ ℝ+ |
3 |
1 2
|
dpval3rp |
⊢ ( 𝐴 . 𝐵 ) = _ 𝐴 𝐵 |
4 |
1 2
|
rpdp2cl |
⊢ _ 𝐴 𝐵 ∈ ℝ+ |
5 |
3 4
|
eqeltri |
⊢ ( 𝐴 . 𝐵 ) ∈ ℝ+ |