| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dpexpp1.a |  |-  A e. NN0 | 
						
							| 2 |  | dpexpp1.b |  |-  B e. RR+ | 
						
							| 3 |  | dpexpp1.1 |  |-  ( P + 1 ) = Q | 
						
							| 4 |  | dpexpp1.p |  |-  P e. ZZ | 
						
							| 5 |  | dpexpp1.q |  |-  Q e. ZZ | 
						
							| 6 |  | 0re |  |-  0 e. RR | 
						
							| 7 |  | 10pos |  |-  0 < ; 1 0 | 
						
							| 8 | 6 7 | gtneii |  |-  ; 1 0 =/= 0 | 
						
							| 9 | 1 2 | rpdp2cl |  |-  _ A B e. RR+ | 
						
							| 10 |  | rpre |  |-  ( _ A B e. RR+ -> _ A B e. RR ) | 
						
							| 11 | 9 10 | ax-mp |  |-  _ A B e. RR | 
						
							| 12 | 11 | recni |  |-  _ A B e. CC | 
						
							| 13 |  | 10re |  |-  ; 1 0 e. RR | 
						
							| 14 | 13 7 | pm3.2i |  |-  ( ; 1 0 e. RR /\ 0 < ; 1 0 ) | 
						
							| 15 |  | elrp |  |-  ( ; 1 0 e. RR+ <-> ( ; 1 0 e. RR /\ 0 < ; 1 0 ) ) | 
						
							| 16 | 14 15 | mpbir |  |-  ; 1 0 e. RR+ | 
						
							| 17 |  | rpexpcl |  |-  ( ( ; 1 0 e. RR+ /\ P e. ZZ ) -> ( ; 1 0 ^ P ) e. RR+ ) | 
						
							| 18 | 16 4 17 | mp2an |  |-  ( ; 1 0 ^ P ) e. RR+ | 
						
							| 19 |  | rpcn |  |-  ( ( ; 1 0 ^ P ) e. RR+ -> ( ; 1 0 ^ P ) e. CC ) | 
						
							| 20 | 18 19 | ax-mp |  |-  ( ; 1 0 ^ P ) e. CC | 
						
							| 21 | 12 20 | mulcli |  |-  ( _ A B x. ( ; 1 0 ^ P ) ) e. CC | 
						
							| 22 |  | 10nn0 |  |-  ; 1 0 e. NN0 | 
						
							| 23 | 22 | nn0cni |  |-  ; 1 0 e. CC | 
						
							| 24 | 21 23 | divcan1zi |  |-  ( ; 1 0 =/= 0 -> ( ( ( _ A B x. ( ; 1 0 ^ P ) ) / ; 1 0 ) x. ; 1 0 ) = ( _ A B x. ( ; 1 0 ^ P ) ) ) | 
						
							| 25 | 8 24 | ax-mp |  |-  ( ( ( _ A B x. ( ; 1 0 ^ P ) ) / ; 1 0 ) x. ; 1 0 ) = ( _ A B x. ( ; 1 0 ^ P ) ) | 
						
							| 26 | 23 8 | pm3.2i |  |-  ( ; 1 0 e. CC /\ ; 1 0 =/= 0 ) | 
						
							| 27 |  | div23 |  |-  ( ( _ A B e. CC /\ ( ; 1 0 ^ P ) e. CC /\ ( ; 1 0 e. CC /\ ; 1 0 =/= 0 ) ) -> ( ( _ A B x. ( ; 1 0 ^ P ) ) / ; 1 0 ) = ( ( _ A B / ; 1 0 ) x. ( ; 1 0 ^ P ) ) ) | 
						
							| 28 | 12 20 26 27 | mp3an |  |-  ( ( _ A B x. ( ; 1 0 ^ P ) ) / ; 1 0 ) = ( ( _ A B / ; 1 0 ) x. ( ; 1 0 ^ P ) ) | 
						
							| 29 | 28 | oveq1i |  |-  ( ( ( _ A B x. ( ; 1 0 ^ P ) ) / ; 1 0 ) x. ; 1 0 ) = ( ( ( _ A B / ; 1 0 ) x. ( ; 1 0 ^ P ) ) x. ; 1 0 ) | 
						
							| 30 | 25 29 | eqtr3i |  |-  ( _ A B x. ( ; 1 0 ^ P ) ) = ( ( ( _ A B / ; 1 0 ) x. ( ; 1 0 ^ P ) ) x. ; 1 0 ) | 
						
							| 31 | 12 23 8 | divcli |  |-  ( _ A B / ; 1 0 ) e. CC | 
						
							| 32 | 31 20 23 | mulassi |  |-  ( ( ( _ A B / ; 1 0 ) x. ( ; 1 0 ^ P ) ) x. ; 1 0 ) = ( ( _ A B / ; 1 0 ) x. ( ( ; 1 0 ^ P ) x. ; 1 0 ) ) | 
						
							| 33 |  | expp1z |  |-  ( ( ; 1 0 e. CC /\ ; 1 0 =/= 0 /\ P e. ZZ ) -> ( ; 1 0 ^ ( P + 1 ) ) = ( ( ; 1 0 ^ P ) x. ; 1 0 ) ) | 
						
							| 34 | 23 8 4 33 | mp3an |  |-  ( ; 1 0 ^ ( P + 1 ) ) = ( ( ; 1 0 ^ P ) x. ; 1 0 ) | 
						
							| 35 | 3 | oveq2i |  |-  ( ; 1 0 ^ ( P + 1 ) ) = ( ; 1 0 ^ Q ) | 
						
							| 36 | 34 35 | eqtr3i |  |-  ( ( ; 1 0 ^ P ) x. ; 1 0 ) = ( ; 1 0 ^ Q ) | 
						
							| 37 | 36 | oveq2i |  |-  ( ( _ A B / ; 1 0 ) x. ( ( ; 1 0 ^ P ) x. ; 1 0 ) ) = ( ( _ A B / ; 1 0 ) x. ( ; 1 0 ^ Q ) ) | 
						
							| 38 | 30 32 37 | 3eqtri |  |-  ( _ A B x. ( ; 1 0 ^ P ) ) = ( ( _ A B / ; 1 0 ) x. ( ; 1 0 ^ Q ) ) | 
						
							| 39 | 1 2 | dpval3rp |  |-  ( A . B ) = _ A B | 
						
							| 40 | 39 | oveq1i |  |-  ( ( A . B ) x. ( ; 1 0 ^ P ) ) = ( _ A B x. ( ; 1 0 ^ P ) ) | 
						
							| 41 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 42 | 41 9 | dpval3rp |  |-  ( 0 . _ A B ) = _ 0 _ A B | 
						
							| 43 | 9 | dp20h |  |-  _ 0 _ A B = ( _ A B / ; 1 0 ) | 
						
							| 44 | 42 43 | eqtri |  |-  ( 0 . _ A B ) = ( _ A B / ; 1 0 ) | 
						
							| 45 | 44 | oveq1i |  |-  ( ( 0 . _ A B ) x. ( ; 1 0 ^ Q ) ) = ( ( _ A B / ; 1 0 ) x. ( ; 1 0 ^ Q ) ) | 
						
							| 46 | 38 40 45 | 3eqtr4i |  |-  ( ( A . B ) x. ( ; 1 0 ^ P ) ) = ( ( 0 . _ A B ) x. ( ; 1 0 ^ Q ) ) |