| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0dp2dp.a |  |-  A e. NN0 | 
						
							| 2 |  | 0dp2dp.b |  |-  B e. RR+ | 
						
							| 3 |  | 0p1e1 |  |-  ( 0 + 1 ) = 1 | 
						
							| 4 |  | 0z |  |-  0 e. ZZ | 
						
							| 5 |  | 1z |  |-  1 e. ZZ | 
						
							| 6 | 1 2 3 4 5 | dpexpp1 |  |-  ( ( A . B ) x. ( ; 1 0 ^ 0 ) ) = ( ( 0 . _ A B ) x. ( ; 1 0 ^ 1 ) ) | 
						
							| 7 |  | 10nn0 |  |-  ; 1 0 e. NN0 | 
						
							| 8 | 7 | nn0cni |  |-  ; 1 0 e. CC | 
						
							| 9 |  | exp0 |  |-  ( ; 1 0 e. CC -> ( ; 1 0 ^ 0 ) = 1 ) | 
						
							| 10 | 8 9 | ax-mp |  |-  ( ; 1 0 ^ 0 ) = 1 | 
						
							| 11 | 10 | oveq2i |  |-  ( ( A . B ) x. ( ; 1 0 ^ 0 ) ) = ( ( A . B ) x. 1 ) | 
						
							| 12 |  | exp1 |  |-  ( ; 1 0 e. CC -> ( ; 1 0 ^ 1 ) = ; 1 0 ) | 
						
							| 13 | 8 12 | ax-mp |  |-  ( ; 1 0 ^ 1 ) = ; 1 0 | 
						
							| 14 | 13 | oveq2i |  |-  ( ( 0 . _ A B ) x. ( ; 1 0 ^ 1 ) ) = ( ( 0 . _ A B ) x. ; 1 0 ) | 
						
							| 15 | 6 11 14 | 3eqtr3ri |  |-  ( ( 0 . _ A B ) x. ; 1 0 ) = ( ( A . B ) x. 1 ) | 
						
							| 16 | 1 2 | rpdpcl |  |-  ( A . B ) e. RR+ | 
						
							| 17 |  | rpcn |  |-  ( ( A . B ) e. RR+ -> ( A . B ) e. CC ) | 
						
							| 18 | 16 17 | ax-mp |  |-  ( A . B ) e. CC | 
						
							| 19 |  | mulrid |  |-  ( ( A . B ) e. CC -> ( ( A . B ) x. 1 ) = ( A . B ) ) | 
						
							| 20 | 18 19 | ax-mp |  |-  ( ( A . B ) x. 1 ) = ( A . B ) | 
						
							| 21 | 15 20 | eqtri |  |-  ( ( 0 . _ A B ) x. ; 1 0 ) = ( A . B ) |