| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0dp2dp.a | ⊢ 𝐴  ∈  ℕ0 | 
						
							| 2 |  | 0dp2dp.b | ⊢ 𝐵  ∈  ℝ+ | 
						
							| 3 |  | 0p1e1 | ⊢ ( 0  +  1 )  =  1 | 
						
							| 4 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 5 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 6 | 1 2 3 4 5 | dpexpp1 | ⊢ ( ( 𝐴 . 𝐵 )  ·  ( ; 1 0 ↑ 0 ) )  =  ( ( 0 . _ 𝐴 𝐵 )  ·  ( ; 1 0 ↑ 1 ) ) | 
						
							| 7 |  | 10nn0 | ⊢ ; 1 0  ∈  ℕ0 | 
						
							| 8 | 7 | nn0cni | ⊢ ; 1 0  ∈  ℂ | 
						
							| 9 |  | exp0 | ⊢ ( ; 1 0  ∈  ℂ  →  ( ; 1 0 ↑ 0 )  =  1 ) | 
						
							| 10 | 8 9 | ax-mp | ⊢ ( ; 1 0 ↑ 0 )  =  1 | 
						
							| 11 | 10 | oveq2i | ⊢ ( ( 𝐴 . 𝐵 )  ·  ( ; 1 0 ↑ 0 ) )  =  ( ( 𝐴 . 𝐵 )  ·  1 ) | 
						
							| 12 |  | exp1 | ⊢ ( ; 1 0  ∈  ℂ  →  ( ; 1 0 ↑ 1 )  =  ; 1 0 ) | 
						
							| 13 | 8 12 | ax-mp | ⊢ ( ; 1 0 ↑ 1 )  =  ; 1 0 | 
						
							| 14 | 13 | oveq2i | ⊢ ( ( 0 . _ 𝐴 𝐵 )  ·  ( ; 1 0 ↑ 1 ) )  =  ( ( 0 . _ 𝐴 𝐵 )  ·  ; 1 0 ) | 
						
							| 15 | 6 11 14 | 3eqtr3ri | ⊢ ( ( 0 . _ 𝐴 𝐵 )  ·  ; 1 0 )  =  ( ( 𝐴 . 𝐵 )  ·  1 ) | 
						
							| 16 | 1 2 | rpdpcl | ⊢ ( 𝐴 . 𝐵 )  ∈  ℝ+ | 
						
							| 17 |  | rpcn | ⊢ ( ( 𝐴 . 𝐵 )  ∈  ℝ+  →  ( 𝐴 . 𝐵 )  ∈  ℂ ) | 
						
							| 18 | 16 17 | ax-mp | ⊢ ( 𝐴 . 𝐵 )  ∈  ℂ | 
						
							| 19 |  | mulrid | ⊢ ( ( 𝐴 . 𝐵 )  ∈  ℂ  →  ( ( 𝐴 . 𝐵 )  ·  1 )  =  ( 𝐴 . 𝐵 ) ) | 
						
							| 20 | 18 19 | ax-mp | ⊢ ( ( 𝐴 . 𝐵 )  ·  1 )  =  ( 𝐴 . 𝐵 ) | 
						
							| 21 | 15 20 | eqtri | ⊢ ( ( 0 . _ 𝐴 𝐵 )  ·  ; 1 0 )  =  ( 𝐴 . 𝐵 ) |