Metamath Proof Explorer


Theorem hgt750lemc

Description: An upper bound to the summatory function of the von Mangoldt function. (Contributed by Thierry Arnoux, 29-Dec-2021)

Ref Expression
Hypothesis hgt750lemc.n φN
Assertion hgt750lemc φj=1NΛj< 1 .03883 N

Proof

Step Hyp Ref Expression
1 hgt750lemc.n φN
2 1 nnzd φN
3 chpvalz NψN=j=1NΛj
4 2 3 syl φψN=j=1NΛj
5 fveq2 x=Nψx=ψN
6 oveq2 x=N1 .03883x= 1 .03883 N
7 5 6 breq12d x=Nψx<1 .03883xψN< 1 .03883 N
8 ax-ros335 x+ψx<1 .03883x
9 8 a1i φx+ψx<1 .03883x
10 1 nnrpd φN+
11 7 9 10 rspcdva φψN< 1 .03883 N
12 4 11 eqbrtrrd φj=1NΛj< 1 .03883 N