Step |
Hyp |
Ref |
Expression |
1 |
|
elequ1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑦 ↔ 𝑦 ∈ 𝑦 ) ) |
2 |
|
elequ2 |
⊢ ( 𝑥 = 𝑤 → ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑤 ) ) |
3 |
2
|
cbvalvw |
⊢ ( ∀ 𝑥 𝑧 ∈ 𝑥 ↔ ∀ 𝑤 𝑧 ∈ 𝑤 ) |
4 |
3
|
a1i |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑥 𝑧 ∈ 𝑥 ↔ ∀ 𝑤 𝑧 ∈ 𝑤 ) ) |
5 |
|
elequ1 |
⊢ ( 𝑦 = 𝑣 → ( 𝑦 ∈ 𝑥 ↔ 𝑣 ∈ 𝑥 ) ) |
6 |
5
|
albidv |
⊢ ( 𝑦 = 𝑣 → ( ∀ 𝑧 𝑦 ∈ 𝑥 ↔ ∀ 𝑧 𝑣 ∈ 𝑥 ) ) |
7 |
6
|
cbvalvw |
⊢ ( ∀ 𝑦 ∀ 𝑧 𝑦 ∈ 𝑥 ↔ ∀ 𝑣 ∀ 𝑧 𝑣 ∈ 𝑥 ) |
8 |
|
elequ2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑣 ∈ 𝑥 ↔ 𝑣 ∈ 𝑦 ) ) |
9 |
8
|
albidv |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑧 𝑣 ∈ 𝑥 ↔ ∀ 𝑧 𝑣 ∈ 𝑦 ) ) |
10 |
9
|
albidv |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑣 ∀ 𝑧 𝑣 ∈ 𝑥 ↔ ∀ 𝑣 ∀ 𝑧 𝑣 ∈ 𝑦 ) ) |
11 |
7 10
|
bitrid |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑦 ∀ 𝑧 𝑦 ∈ 𝑥 ↔ ∀ 𝑣 ∀ 𝑧 𝑣 ∈ 𝑦 ) ) |
12 |
1 4 11
|
3anbi123d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑥 𝑧 ∈ 𝑥 ∧ ∀ 𝑦 ∀ 𝑧 𝑦 ∈ 𝑥 ) ↔ ( 𝑦 ∈ 𝑦 ∧ ∀ 𝑤 𝑧 ∈ 𝑤 ∧ ∀ 𝑣 ∀ 𝑧 𝑣 ∈ 𝑦 ) ) ) |
13 |
|
elequ2 |
⊢ ( 𝑦 = 𝑣 → ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑣 ) ) |
14 |
7
|
a1i |
⊢ ( 𝑦 = 𝑣 → ( ∀ 𝑦 ∀ 𝑧 𝑦 ∈ 𝑥 ↔ ∀ 𝑣 ∀ 𝑧 𝑣 ∈ 𝑥 ) ) |
15 |
13 14
|
3anbi13d |
⊢ ( 𝑦 = 𝑣 → ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑥 𝑧 ∈ 𝑥 ∧ ∀ 𝑦 ∀ 𝑧 𝑦 ∈ 𝑥 ) ↔ ( 𝑥 ∈ 𝑣 ∧ ∀ 𝑥 𝑧 ∈ 𝑥 ∧ ∀ 𝑣 ∀ 𝑧 𝑣 ∈ 𝑥 ) ) ) |
16 |
12 15
|
ax12w |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑥 𝑧 ∈ 𝑥 ∧ ∀ 𝑦 ∀ 𝑧 𝑦 ∈ 𝑥 ) → ∀ 𝑥 ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑥 𝑧 ∈ 𝑥 ∧ ∀ 𝑦 ∀ 𝑧 𝑦 ∈ 𝑥 ) ) ) ) |