| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							elequ1 | 
							⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ∈  𝑦  ↔  𝑦  ∈  𝑦 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							elequ2 | 
							⊢ ( 𝑥  =  𝑤  →  ( 𝑧  ∈  𝑥  ↔  𝑧  ∈  𝑤 ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							cbvalvw | 
							⊢ ( ∀ 𝑥 𝑧  ∈  𝑥  ↔  ∀ 𝑤 𝑧  ∈  𝑤 )  | 
						
						
							| 4 | 
							
								3
							 | 
							a1i | 
							⊢ ( 𝑥  =  𝑦  →  ( ∀ 𝑥 𝑧  ∈  𝑥  ↔  ∀ 𝑤 𝑧  ∈  𝑤 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							elequ1 | 
							⊢ ( 𝑦  =  𝑣  →  ( 𝑦  ∈  𝑥  ↔  𝑣  ∈  𝑥 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							albidv | 
							⊢ ( 𝑦  =  𝑣  →  ( ∀ 𝑧 𝑦  ∈  𝑥  ↔  ∀ 𝑧 𝑣  ∈  𝑥 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							cbvalvw | 
							⊢ ( ∀ 𝑦 ∀ 𝑧 𝑦  ∈  𝑥  ↔  ∀ 𝑣 ∀ 𝑧 𝑣  ∈  𝑥 )  | 
						
						
							| 8 | 
							
								
							 | 
							elequ2 | 
							⊢ ( 𝑥  =  𝑦  →  ( 𝑣  ∈  𝑥  ↔  𝑣  ∈  𝑦 ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							albidv | 
							⊢ ( 𝑥  =  𝑦  →  ( ∀ 𝑧 𝑣  ∈  𝑥  ↔  ∀ 𝑧 𝑣  ∈  𝑦 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							albidv | 
							⊢ ( 𝑥  =  𝑦  →  ( ∀ 𝑣 ∀ 𝑧 𝑣  ∈  𝑥  ↔  ∀ 𝑣 ∀ 𝑧 𝑣  ∈  𝑦 ) )  | 
						
						
							| 11 | 
							
								7 10
							 | 
							bitrid | 
							⊢ ( 𝑥  =  𝑦  →  ( ∀ 𝑦 ∀ 𝑧 𝑦  ∈  𝑥  ↔  ∀ 𝑣 ∀ 𝑧 𝑣  ∈  𝑦 ) )  | 
						
						
							| 12 | 
							
								1 4 11
							 | 
							3anbi123d | 
							⊢ ( 𝑥  =  𝑦  →  ( ( 𝑥  ∈  𝑦  ∧  ∀ 𝑥 𝑧  ∈  𝑥  ∧  ∀ 𝑦 ∀ 𝑧 𝑦  ∈  𝑥 )  ↔  ( 𝑦  ∈  𝑦  ∧  ∀ 𝑤 𝑧  ∈  𝑤  ∧  ∀ 𝑣 ∀ 𝑧 𝑣  ∈  𝑦 ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							elequ2 | 
							⊢ ( 𝑦  =  𝑣  →  ( 𝑥  ∈  𝑦  ↔  𝑥  ∈  𝑣 ) )  | 
						
						
							| 14 | 
							
								7
							 | 
							a1i | 
							⊢ ( 𝑦  =  𝑣  →  ( ∀ 𝑦 ∀ 𝑧 𝑦  ∈  𝑥  ↔  ∀ 𝑣 ∀ 𝑧 𝑣  ∈  𝑥 ) )  | 
						
						
							| 15 | 
							
								13 14
							 | 
							3anbi13d | 
							⊢ ( 𝑦  =  𝑣  →  ( ( 𝑥  ∈  𝑦  ∧  ∀ 𝑥 𝑧  ∈  𝑥  ∧  ∀ 𝑦 ∀ 𝑧 𝑦  ∈  𝑥 )  ↔  ( 𝑥  ∈  𝑣  ∧  ∀ 𝑥 𝑧  ∈  𝑥  ∧  ∀ 𝑣 ∀ 𝑧 𝑣  ∈  𝑥 ) ) )  | 
						
						
							| 16 | 
							
								12 15
							 | 
							ax12w | 
							⊢ ( 𝑥  =  𝑦  →  ( ∀ 𝑦 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑥 𝑧  ∈  𝑥  ∧  ∀ 𝑦 ∀ 𝑧 𝑦  ∈  𝑥 )  →  ∀ 𝑥 ( 𝑥  =  𝑦  →  ( 𝑥  ∈  𝑦  ∧  ∀ 𝑥 𝑧  ∈  𝑥  ∧  ∀ 𝑦 ∀ 𝑧 𝑦  ∈  𝑥 ) ) ) )  |