Metamath Proof Explorer


Theorem ax12wdemo

Description: Example of an application of ax12w that results in an instance of ax-12 for a contrived formula with mixed free and bound variables, ( x e. y /\ A. x z e. x /\ A. y A. z y e. x ) , in place of ph . The proof illustrates bound variable renaming with cbvalvw to obtain fresh variables to avoid distinct variable clashes. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 14-Apr-2017)

Ref Expression
Assertion ax12wdemo x=yyxyxzxyzyxxx=yxyxzxyzyx

Proof

Step Hyp Ref Expression
1 elequ1 x=yxyyy
2 elequ2 x=wzxzw
3 2 cbvalvw xzxwzw
4 3 a1i x=yxzxwzw
5 elequ1 y=vyxvx
6 5 albidv y=vzyxzvx
7 6 cbvalvw yzyxvzvx
8 elequ2 x=yvxvy
9 8 albidv x=yzvxzvy
10 9 albidv x=yvzvxvzvy
11 7 10 bitrid x=yyzyxvzvy
12 1 4 11 3anbi123d x=yxyxzxyzyxyywzwvzvy
13 elequ2 y=vxyxv
14 7 a1i y=vyzyxvzvx
15 13 14 3anbi13d y=vxyxzxyzyxxvxzxvzvx
16 12 15 ax12w x=yyxyxzxyzyxxx=yxyxzxyzyx