Metamath Proof Explorer


Theorem axextdfeq

Description: A version of ax-ext for use with defined equality. (Contributed by Scott Fenton, 12-Dec-2010)

Ref Expression
Assertion axextdfeq 𝑧 ( ( 𝑧𝑥𝑧𝑦 ) → ( ( 𝑧𝑦𝑧𝑥 ) → ( 𝑥𝑤𝑦𝑤 ) ) )

Proof

Step Hyp Ref Expression
1 axextnd 𝑧 ( ( 𝑧𝑥𝑧𝑦 ) → 𝑥 = 𝑦 )
2 ax8 ( 𝑥 = 𝑦 → ( 𝑥𝑤𝑦𝑤 ) )
3 2 imim2i ( ( ( 𝑧𝑥𝑧𝑦 ) → 𝑥 = 𝑦 ) → ( ( 𝑧𝑥𝑧𝑦 ) → ( 𝑥𝑤𝑦𝑤 ) ) )
4 1 3 eximii 𝑧 ( ( 𝑧𝑥𝑧𝑦 ) → ( 𝑥𝑤𝑦𝑤 ) )
5 biimpexp ( ( ( 𝑧𝑥𝑧𝑦 ) → ( 𝑥𝑤𝑦𝑤 ) ) ↔ ( ( 𝑧𝑥𝑧𝑦 ) → ( ( 𝑧𝑦𝑧𝑥 ) → ( 𝑥𝑤𝑦𝑤 ) ) ) )
6 5 exbii ( ∃ 𝑧 ( ( 𝑧𝑥𝑧𝑦 ) → ( 𝑥𝑤𝑦𝑤 ) ) ↔ ∃ 𝑧 ( ( 𝑧𝑥𝑧𝑦 ) → ( ( 𝑧𝑦𝑧𝑥 ) → ( 𝑥𝑤𝑦𝑤 ) ) ) )
7 4 6 mpbi 𝑧 ( ( 𝑧𝑥𝑧𝑦 ) → ( ( 𝑧𝑦𝑧𝑥 ) → ( 𝑥𝑤𝑦𝑤 ) ) )