| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axextnd | ⊢ ∃ 𝑧 ( ( 𝑧  ∈  𝑥  ↔  𝑧  ∈  𝑦 )  →  𝑥  =  𝑦 ) | 
						
							| 2 |  | ax8 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ∈  𝑤  →  𝑦  ∈  𝑤 ) ) | 
						
							| 3 | 2 | imim2i | ⊢ ( ( ( 𝑧  ∈  𝑥  ↔  𝑧  ∈  𝑦 )  →  𝑥  =  𝑦 )  →  ( ( 𝑧  ∈  𝑥  ↔  𝑧  ∈  𝑦 )  →  ( 𝑥  ∈  𝑤  →  𝑦  ∈  𝑤 ) ) ) | 
						
							| 4 | 1 3 | eximii | ⊢ ∃ 𝑧 ( ( 𝑧  ∈  𝑥  ↔  𝑧  ∈  𝑦 )  →  ( 𝑥  ∈  𝑤  →  𝑦  ∈  𝑤 ) ) | 
						
							| 5 |  | biimpexp | ⊢ ( ( ( 𝑧  ∈  𝑥  ↔  𝑧  ∈  𝑦 )  →  ( 𝑥  ∈  𝑤  →  𝑦  ∈  𝑤 ) )  ↔  ( ( 𝑧  ∈  𝑥  →  𝑧  ∈  𝑦 )  →  ( ( 𝑧  ∈  𝑦  →  𝑧  ∈  𝑥 )  →  ( 𝑥  ∈  𝑤  →  𝑦  ∈  𝑤 ) ) ) ) | 
						
							| 6 | 5 | exbii | ⊢ ( ∃ 𝑧 ( ( 𝑧  ∈  𝑥  ↔  𝑧  ∈  𝑦 )  →  ( 𝑥  ∈  𝑤  →  𝑦  ∈  𝑤 ) )  ↔  ∃ 𝑧 ( ( 𝑧  ∈  𝑥  →  𝑧  ∈  𝑦 )  →  ( ( 𝑧  ∈  𝑦  →  𝑧  ∈  𝑥 )  →  ( 𝑥  ∈  𝑤  →  𝑦  ∈  𝑤 ) ) ) ) | 
						
							| 7 | 4 6 | mpbi | ⊢ ∃ 𝑧 ( ( 𝑧  ∈  𝑥  →  𝑧  ∈  𝑦 )  →  ( ( 𝑧  ∈  𝑦  →  𝑧  ∈  𝑥 )  →  ( 𝑥  ∈  𝑤  →  𝑦  ∈  𝑤 ) ) ) |