Step |
Hyp |
Ref |
Expression |
1 |
|
axextnd |
⊢ ∃ 𝑧 ( ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) → 𝑥 = 𝑦 ) |
2 |
|
ax8 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) |
3 |
2
|
imim2i |
⊢ ( ( ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) → 𝑥 = 𝑦 ) → ( ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) → ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ) |
4 |
1 3
|
eximii |
⊢ ∃ 𝑧 ( ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) → ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) |
5 |
|
biimpexp |
⊢ ( ( ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) → ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ↔ ( ( 𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦 ) → ( ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥 ) → ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ) ) |
6 |
5
|
exbii |
⊢ ( ∃ 𝑧 ( ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) → ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ↔ ∃ 𝑧 ( ( 𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦 ) → ( ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥 ) → ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ) ) |
7 |
4 6
|
mpbi |
⊢ ∃ 𝑧 ( ( 𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦 ) → ( ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥 ) → ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ) |