Metamath Proof Explorer


Theorem axextmo

Description: There exists at most one set with prescribed elements. Theorem 1.1 of BellMachover p. 462. (Contributed by NM, 30-Jun-1994) (Proof shortened by Wolf Lammen, 13-Nov-2019) Use the at-most-one quantifier. (Revised by BJ, 17-Sep-2022)

Ref Expression
Hypothesis axextmo.1 𝑥 𝜑
Assertion axextmo ∃* 𝑥𝑦 ( 𝑦𝑥𝜑 )

Proof

Step Hyp Ref Expression
1 axextmo.1 𝑥 𝜑
2 biantr ( ( ( 𝑦𝑥𝜑 ) ∧ ( 𝑦𝑧𝜑 ) ) → ( 𝑦𝑥𝑦𝑧 ) )
3 2 alanimi ( ( ∀ 𝑦 ( 𝑦𝑥𝜑 ) ∧ ∀ 𝑦 ( 𝑦𝑧𝜑 ) ) → ∀ 𝑦 ( 𝑦𝑥𝑦𝑧 ) )
4 ax-ext ( ∀ 𝑦 ( 𝑦𝑥𝑦𝑧 ) → 𝑥 = 𝑧 )
5 3 4 syl ( ( ∀ 𝑦 ( 𝑦𝑥𝜑 ) ∧ ∀ 𝑦 ( 𝑦𝑧𝜑 ) ) → 𝑥 = 𝑧 )
6 5 gen2 𝑥𝑧 ( ( ∀ 𝑦 ( 𝑦𝑥𝜑 ) ∧ ∀ 𝑦 ( 𝑦𝑧𝜑 ) ) → 𝑥 = 𝑧 )
7 nfv 𝑥 𝑦𝑧
8 7 1 nfbi 𝑥 ( 𝑦𝑧𝜑 )
9 8 nfal 𝑥𝑦 ( 𝑦𝑧𝜑 )
10 elequ2 ( 𝑥 = 𝑧 → ( 𝑦𝑥𝑦𝑧 ) )
11 10 bibi1d ( 𝑥 = 𝑧 → ( ( 𝑦𝑥𝜑 ) ↔ ( 𝑦𝑧𝜑 ) ) )
12 11 albidv ( 𝑥 = 𝑧 → ( ∀ 𝑦 ( 𝑦𝑥𝜑 ) ↔ ∀ 𝑦 ( 𝑦𝑧𝜑 ) ) )
13 9 12 mo4f ( ∃* 𝑥𝑦 ( 𝑦𝑥𝜑 ) ↔ ∀ 𝑥𝑧 ( ( ∀ 𝑦 ( 𝑦𝑥𝜑 ) ∧ ∀ 𝑦 ( 𝑦𝑧𝜑 ) ) → 𝑥 = 𝑧 ) )
14 6 13 mpbir ∃* 𝑥𝑦 ( 𝑦𝑥𝜑 )