Step |
Hyp |
Ref |
Expression |
1 |
|
axextmo.1 |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
biantr |
⊢ ( ( ( 𝑦 ∈ 𝑥 ↔ 𝜑 ) ∧ ( 𝑦 ∈ 𝑧 ↔ 𝜑 ) ) → ( 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑧 ) ) |
3 |
2
|
alanimi |
⊢ ( ( ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ 𝜑 ) ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ 𝜑 ) ) → ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑧 ) ) |
4 |
|
ax-ext |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑧 ) → 𝑥 = 𝑧 ) |
5 |
3 4
|
syl |
⊢ ( ( ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ 𝜑 ) ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ 𝜑 ) ) → 𝑥 = 𝑧 ) |
6 |
5
|
gen2 |
⊢ ∀ 𝑥 ∀ 𝑧 ( ( ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ 𝜑 ) ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ 𝜑 ) ) → 𝑥 = 𝑧 ) |
7 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 ∈ 𝑧 |
8 |
7 1
|
nfbi |
⊢ Ⅎ 𝑥 ( 𝑦 ∈ 𝑧 ↔ 𝜑 ) |
9 |
8
|
nfal |
⊢ Ⅎ 𝑥 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ 𝜑 ) |
10 |
|
elequ2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑧 ) ) |
11 |
10
|
bibi1d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑦 ∈ 𝑥 ↔ 𝜑 ) ↔ ( 𝑦 ∈ 𝑧 ↔ 𝜑 ) ) ) |
12 |
11
|
albidv |
⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ 𝜑 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ 𝜑 ) ) ) |
13 |
9 12
|
mo4f |
⊢ ( ∃* 𝑥 ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ 𝜑 ) ↔ ∀ 𝑥 ∀ 𝑧 ( ( ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ 𝜑 ) ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ 𝜑 ) ) → 𝑥 = 𝑧 ) ) |
14 |
6 13
|
mpbir |
⊢ ∃* 𝑥 ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ 𝜑 ) |