| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axextnd | ⊢ ∃ 𝑥 ( ( 𝑥  ∈  𝑦  ↔  𝑥  ∈  𝑧 )  →  𝑦  =  𝑧 ) | 
						
							| 2 |  | dfbi2 | ⊢ ( ( 𝑥  ∈  𝑦  ↔  𝑥  ∈  𝑧 )  ↔  ( ( 𝑥  ∈  𝑦  →  𝑥  ∈  𝑧 )  ∧  ( 𝑥  ∈  𝑧  →  𝑥  ∈  𝑦 ) ) ) | 
						
							| 3 | 2 | imbi1i | ⊢ ( ( ( 𝑥  ∈  𝑦  ↔  𝑥  ∈  𝑧 )  →  𝑦  =  𝑧 )  ↔  ( ( ( 𝑥  ∈  𝑦  →  𝑥  ∈  𝑧 )  ∧  ( 𝑥  ∈  𝑧  →  𝑥  ∈  𝑦 ) )  →  𝑦  =  𝑧 ) ) | 
						
							| 4 |  | impexp | ⊢ ( ( ( ( 𝑥  ∈  𝑦  →  𝑥  ∈  𝑧 )  ∧  ( 𝑥  ∈  𝑧  →  𝑥  ∈  𝑦 ) )  →  𝑦  =  𝑧 )  ↔  ( ( 𝑥  ∈  𝑦  →  𝑥  ∈  𝑧 )  →  ( ( 𝑥  ∈  𝑧  →  𝑥  ∈  𝑦 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 5 | 3 4 | bitri | ⊢ ( ( ( 𝑥  ∈  𝑦  ↔  𝑥  ∈  𝑧 )  →  𝑦  =  𝑧 )  ↔  ( ( 𝑥  ∈  𝑦  →  𝑥  ∈  𝑧 )  →  ( ( 𝑥  ∈  𝑧  →  𝑥  ∈  𝑦 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 6 | 5 | exbii | ⊢ ( ∃ 𝑥 ( ( 𝑥  ∈  𝑦  ↔  𝑥  ∈  𝑧 )  →  𝑦  =  𝑧 )  ↔  ∃ 𝑥 ( ( 𝑥  ∈  𝑦  →  𝑥  ∈  𝑧 )  →  ( ( 𝑥  ∈  𝑧  →  𝑥  ∈  𝑦 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 7 |  | df-ex | ⊢ ( ∃ 𝑥 ( ( 𝑥  ∈  𝑦  →  𝑥  ∈  𝑧 )  →  ( ( 𝑥  ∈  𝑧  →  𝑥  ∈  𝑦 )  →  𝑦  =  𝑧 ) )  ↔  ¬  ∀ 𝑥 ¬  ( ( 𝑥  ∈  𝑦  →  𝑥  ∈  𝑧 )  →  ( ( 𝑥  ∈  𝑧  →  𝑥  ∈  𝑦 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 8 | 6 7 | bitri | ⊢ ( ∃ 𝑥 ( ( 𝑥  ∈  𝑦  ↔  𝑥  ∈  𝑧 )  →  𝑦  =  𝑧 )  ↔  ¬  ∀ 𝑥 ¬  ( ( 𝑥  ∈  𝑦  →  𝑥  ∈  𝑧 )  →  ( ( 𝑥  ∈  𝑧  →  𝑥  ∈  𝑦 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 9 | 1 8 | mpbi | ⊢ ¬  ∀ 𝑥 ¬  ( ( 𝑥  ∈  𝑦  →  𝑥  ∈  𝑧 )  →  ( ( 𝑥  ∈  𝑧  →  𝑥  ∈  𝑦 )  →  𝑦  =  𝑧 ) ) |