Metamath Proof Explorer


Theorem axextprim

Description: ax-ext without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010)

Ref Expression
Assertion axextprim ¬ ∀ 𝑥 ¬ ( ( 𝑥𝑦𝑥𝑧 ) → ( ( 𝑥𝑧𝑥𝑦 ) → 𝑦 = 𝑧 ) )

Proof

Step Hyp Ref Expression
1 axextnd 𝑥 ( ( 𝑥𝑦𝑥𝑧 ) → 𝑦 = 𝑧 )
2 dfbi2 ( ( 𝑥𝑦𝑥𝑧 ) ↔ ( ( 𝑥𝑦𝑥𝑧 ) ∧ ( 𝑥𝑧𝑥𝑦 ) ) )
3 2 imbi1i ( ( ( 𝑥𝑦𝑥𝑧 ) → 𝑦 = 𝑧 ) ↔ ( ( ( 𝑥𝑦𝑥𝑧 ) ∧ ( 𝑥𝑧𝑥𝑦 ) ) → 𝑦 = 𝑧 ) )
4 impexp ( ( ( ( 𝑥𝑦𝑥𝑧 ) ∧ ( 𝑥𝑧𝑥𝑦 ) ) → 𝑦 = 𝑧 ) ↔ ( ( 𝑥𝑦𝑥𝑧 ) → ( ( 𝑥𝑧𝑥𝑦 ) → 𝑦 = 𝑧 ) ) )
5 3 4 bitri ( ( ( 𝑥𝑦𝑥𝑧 ) → 𝑦 = 𝑧 ) ↔ ( ( 𝑥𝑦𝑥𝑧 ) → ( ( 𝑥𝑧𝑥𝑦 ) → 𝑦 = 𝑧 ) ) )
6 5 exbii ( ∃ 𝑥 ( ( 𝑥𝑦𝑥𝑧 ) → 𝑦 = 𝑧 ) ↔ ∃ 𝑥 ( ( 𝑥𝑦𝑥𝑧 ) → ( ( 𝑥𝑧𝑥𝑦 ) → 𝑦 = 𝑧 ) ) )
7 df-ex ( ∃ 𝑥 ( ( 𝑥𝑦𝑥𝑧 ) → ( ( 𝑥𝑧𝑥𝑦 ) → 𝑦 = 𝑧 ) ) ↔ ¬ ∀ 𝑥 ¬ ( ( 𝑥𝑦𝑥𝑧 ) → ( ( 𝑥𝑧𝑥𝑦 ) → 𝑦 = 𝑧 ) ) )
8 6 7 bitri ( ∃ 𝑥 ( ( 𝑥𝑦𝑥𝑧 ) → 𝑦 = 𝑧 ) ↔ ¬ ∀ 𝑥 ¬ ( ( 𝑥𝑦𝑥𝑧 ) → ( ( 𝑥𝑧𝑥𝑦 ) → 𝑦 = 𝑧 ) ) )
9 1 8 mpbi ¬ ∀ 𝑥 ¬ ( ( 𝑥𝑦𝑥𝑧 ) → ( ( 𝑥𝑧𝑥𝑦 ) → 𝑦 = 𝑧 ) )