Step |
Hyp |
Ref |
Expression |
1 |
|
axextnd |
⊢ ∃ 𝑥 ( ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧 ) → 𝑦 = 𝑧 ) |
2 |
|
dfbi2 |
⊢ ( ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧 ) ↔ ( ( 𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧 ) ∧ ( 𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑦 ) ) ) |
3 |
2
|
imbi1i |
⊢ ( ( ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧 ) → 𝑦 = 𝑧 ) ↔ ( ( ( 𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧 ) ∧ ( 𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑦 ) ) → 𝑦 = 𝑧 ) ) |
4 |
|
impexp |
⊢ ( ( ( ( 𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧 ) ∧ ( 𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑦 ) ) → 𝑦 = 𝑧 ) ↔ ( ( 𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧 ) → ( ( 𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑦 ) → 𝑦 = 𝑧 ) ) ) |
5 |
3 4
|
bitri |
⊢ ( ( ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧 ) → 𝑦 = 𝑧 ) ↔ ( ( 𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧 ) → ( ( 𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑦 ) → 𝑦 = 𝑧 ) ) ) |
6 |
5
|
exbii |
⊢ ( ∃ 𝑥 ( ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧 ) → 𝑦 = 𝑧 ) ↔ ∃ 𝑥 ( ( 𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧 ) → ( ( 𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑦 ) → 𝑦 = 𝑧 ) ) ) |
7 |
|
df-ex |
⊢ ( ∃ 𝑥 ( ( 𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧 ) → ( ( 𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑦 ) → 𝑦 = 𝑧 ) ) ↔ ¬ ∀ 𝑥 ¬ ( ( 𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧 ) → ( ( 𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑦 ) → 𝑦 = 𝑧 ) ) ) |
8 |
6 7
|
bitri |
⊢ ( ∃ 𝑥 ( ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧 ) → 𝑦 = 𝑧 ) ↔ ¬ ∀ 𝑥 ¬ ( ( 𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧 ) → ( ( 𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑦 ) → 𝑦 = 𝑧 ) ) ) |
9 |
1 8
|
mpbi |
⊢ ¬ ∀ 𝑥 ¬ ( ( 𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧 ) → ( ( 𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑦 ) → 𝑦 = 𝑧 ) ) |