| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axhil.1 | ⊢ 𝑈  =  〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉 | 
						
							| 2 |  | axhil.2 | ⊢ 𝑈  ∈  CHilOLD | 
						
							| 3 |  | df-hba | ⊢  ℋ  =  ( BaseSet ‘ 〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉 ) | 
						
							| 4 | 1 | fveq2i | ⊢ ( BaseSet ‘ 𝑈 )  =  ( BaseSet ‘ 〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉 ) | 
						
							| 5 | 3 4 | eqtr4i | ⊢  ℋ  =  ( BaseSet ‘ 𝑈 ) | 
						
							| 6 | 2 | hlnvi | ⊢ 𝑈  ∈  NrmCVec | 
						
							| 7 | 1 6 | h2hva | ⊢  +ℎ   =  (  +𝑣  ‘ 𝑈 ) | 
						
							| 8 | 1 6 | h2hsm | ⊢  ·ℎ   =  (  ·𝑠OLD  ‘ 𝑈 ) | 
						
							| 9 | 5 7 8 | hldir | ⊢ ( ( 𝑈  ∈  CHilOLD  ∧  ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈   ℋ ) )  →  ( ( 𝐴  +  𝐵 )  ·ℎ  𝐶 )  =  ( ( 𝐴  ·ℎ  𝐶 )  +ℎ  ( 𝐵  ·ℎ  𝐶 ) ) ) | 
						
							| 10 | 2 9 | mpan | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈   ℋ )  →  ( ( 𝐴  +  𝐵 )  ·ℎ  𝐶 )  =  ( ( 𝐴  ·ℎ  𝐶 )  +ℎ  ( 𝐵  ·ℎ  𝐶 ) ) ) |