Metamath Proof Explorer


Theorem axicn

Description: _i is a complex number. Axiom 3 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-icn . (Contributed by NM, 23-Feb-1996) (New usage is discouraged.)

Ref Expression
Assertion axicn i ∈ ℂ

Proof

Step Hyp Ref Expression
1 0r 0RR
2 1sr 1RR
3 df-i i = ⟨ 0R , 1R
4 3 eleq1i ( i ∈ ℂ ↔ ⟨ 0R , 1R ⟩ ∈ ℂ )
5 opelcn ( ⟨ 0R , 1R ⟩ ∈ ℂ ↔ ( 0RR ∧ 1RR ) )
6 4 5 bitri ( i ∈ ℂ ↔ ( 0RR ∧ 1RR ) )
7 1 2 6 mpbir2an i ∈ ℂ