| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfcnqs | ⊢ ℂ  =  ( ( R  ×  R )  /  ◡  E  ) | 
						
							| 2 |  | mulcnsrec | ⊢ ( ( ( 𝑥  ∈  R  ∧  𝑦  ∈  R )  ∧  ( 𝑧  ∈  R  ∧  𝑤  ∈  R ) )  →  ( [ 〈 𝑥 ,  𝑦 〉 ] ◡  E   ·  [ 〈 𝑧 ,  𝑤 〉 ] ◡  E  )  =  [ 〈 ( ( 𝑥  ·R  𝑧 )  +R  ( -1R  ·R  ( 𝑦  ·R  𝑤 ) ) ) ,  ( ( 𝑦  ·R  𝑧 )  +R  ( 𝑥  ·R  𝑤 ) ) 〉 ] ◡  E  ) | 
						
							| 3 |  | mulcnsrec | ⊢ ( ( ( 𝑧  ∈  R  ∧  𝑤  ∈  R )  ∧  ( 𝑥  ∈  R  ∧  𝑦  ∈  R ) )  →  ( [ 〈 𝑧 ,  𝑤 〉 ] ◡  E   ·  [ 〈 𝑥 ,  𝑦 〉 ] ◡  E  )  =  [ 〈 ( ( 𝑧  ·R  𝑥 )  +R  ( -1R  ·R  ( 𝑤  ·R  𝑦 ) ) ) ,  ( ( 𝑤  ·R  𝑥 )  +R  ( 𝑧  ·R  𝑦 ) ) 〉 ] ◡  E  ) | 
						
							| 4 |  | mulcomsr | ⊢ ( 𝑥  ·R  𝑧 )  =  ( 𝑧  ·R  𝑥 ) | 
						
							| 5 |  | mulcomsr | ⊢ ( 𝑦  ·R  𝑤 )  =  ( 𝑤  ·R  𝑦 ) | 
						
							| 6 | 5 | oveq2i | ⊢ ( -1R  ·R  ( 𝑦  ·R  𝑤 ) )  =  ( -1R  ·R  ( 𝑤  ·R  𝑦 ) ) | 
						
							| 7 | 4 6 | oveq12i | ⊢ ( ( 𝑥  ·R  𝑧 )  +R  ( -1R  ·R  ( 𝑦  ·R  𝑤 ) ) )  =  ( ( 𝑧  ·R  𝑥 )  +R  ( -1R  ·R  ( 𝑤  ·R  𝑦 ) ) ) | 
						
							| 8 |  | mulcomsr | ⊢ ( 𝑦  ·R  𝑧 )  =  ( 𝑧  ·R  𝑦 ) | 
						
							| 9 |  | mulcomsr | ⊢ ( 𝑥  ·R  𝑤 )  =  ( 𝑤  ·R  𝑥 ) | 
						
							| 10 | 8 9 | oveq12i | ⊢ ( ( 𝑦  ·R  𝑧 )  +R  ( 𝑥  ·R  𝑤 ) )  =  ( ( 𝑧  ·R  𝑦 )  +R  ( 𝑤  ·R  𝑥 ) ) | 
						
							| 11 |  | addcomsr | ⊢ ( ( 𝑧  ·R  𝑦 )  +R  ( 𝑤  ·R  𝑥 ) )  =  ( ( 𝑤  ·R  𝑥 )  +R  ( 𝑧  ·R  𝑦 ) ) | 
						
							| 12 | 10 11 | eqtri | ⊢ ( ( 𝑦  ·R  𝑧 )  +R  ( 𝑥  ·R  𝑤 ) )  =  ( ( 𝑤  ·R  𝑥 )  +R  ( 𝑧  ·R  𝑦 ) ) | 
						
							| 13 | 1 2 3 7 12 | ecovcom | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐴  ·  𝐵 )  =  ( 𝐵  ·  𝐴 ) ) |