Metamath Proof Explorer


Theorem axmulcom

Description: Multiplication of complex numbers is commutative. Axiom 8 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcom be used later. Instead, use mulcom . (Contributed by NM, 31-Aug-1995) (New usage is discouraged.)

Ref Expression
Assertion axmulcom ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) )

Proof

Step Hyp Ref Expression
1 dfcnqs ℂ = ( ( R × R ) / E )
2 mulcnsrec ( ( ( 𝑥R𝑦R ) ∧ ( 𝑧R𝑤R ) ) → ( [ ⟨ 𝑥 , 𝑦 ⟩ ] E · [ ⟨ 𝑧 , 𝑤 ⟩ ] E ) = [ ⟨ ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) , ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ⟩ ] E )
3 mulcnsrec ( ( ( 𝑧R𝑤R ) ∧ ( 𝑥R𝑦R ) ) → ( [ ⟨ 𝑧 , 𝑤 ⟩ ] E · [ ⟨ 𝑥 , 𝑦 ⟩ ] E ) = [ ⟨ ( ( 𝑧 ·R 𝑥 ) +R ( -1R ·R ( 𝑤 ·R 𝑦 ) ) ) , ( ( 𝑤 ·R 𝑥 ) +R ( 𝑧 ·R 𝑦 ) ) ⟩ ] E )
4 mulcomsr ( 𝑥 ·R 𝑧 ) = ( 𝑧 ·R 𝑥 )
5 mulcomsr ( 𝑦 ·R 𝑤 ) = ( 𝑤 ·R 𝑦 )
6 5 oveq2i ( -1R ·R ( 𝑦 ·R 𝑤 ) ) = ( -1R ·R ( 𝑤 ·R 𝑦 ) )
7 4 6 oveq12i ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) = ( ( 𝑧 ·R 𝑥 ) +R ( -1R ·R ( 𝑤 ·R 𝑦 ) ) )
8 mulcomsr ( 𝑦 ·R 𝑧 ) = ( 𝑧 ·R 𝑦 )
9 mulcomsr ( 𝑥 ·R 𝑤 ) = ( 𝑤 ·R 𝑥 )
10 8 9 oveq12i ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) = ( ( 𝑧 ·R 𝑦 ) +R ( 𝑤 ·R 𝑥 ) )
11 addcomsr ( ( 𝑧 ·R 𝑦 ) +R ( 𝑤 ·R 𝑥 ) ) = ( ( 𝑤 ·R 𝑥 ) +R ( 𝑧 ·R 𝑦 ) )
12 10 11 eqtri ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) = ( ( 𝑤 ·R 𝑥 ) +R ( 𝑧 ·R 𝑦 ) )
13 1 2 3 7 12 ecovcom ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) )