| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfcnqs |  |-  CC = ( ( R. X. R. ) /. `' _E ) | 
						
							| 2 |  | mulcnsrec |  |-  ( ( ( x e. R. /\ y e. R. ) /\ ( z e. R. /\ w e. R. ) ) -> ( [ <. x , y >. ] `' _E x. [ <. z , w >. ] `' _E ) = [ <. ( ( x .R z ) +R ( -1R .R ( y .R w ) ) ) , ( ( y .R z ) +R ( x .R w ) ) >. ] `' _E ) | 
						
							| 3 |  | mulcnsrec |  |-  ( ( ( z e. R. /\ w e. R. ) /\ ( x e. R. /\ y e. R. ) ) -> ( [ <. z , w >. ] `' _E x. [ <. x , y >. ] `' _E ) = [ <. ( ( z .R x ) +R ( -1R .R ( w .R y ) ) ) , ( ( w .R x ) +R ( z .R y ) ) >. ] `' _E ) | 
						
							| 4 |  | mulcomsr |  |-  ( x .R z ) = ( z .R x ) | 
						
							| 5 |  | mulcomsr |  |-  ( y .R w ) = ( w .R y ) | 
						
							| 6 | 5 | oveq2i |  |-  ( -1R .R ( y .R w ) ) = ( -1R .R ( w .R y ) ) | 
						
							| 7 | 4 6 | oveq12i |  |-  ( ( x .R z ) +R ( -1R .R ( y .R w ) ) ) = ( ( z .R x ) +R ( -1R .R ( w .R y ) ) ) | 
						
							| 8 |  | mulcomsr |  |-  ( y .R z ) = ( z .R y ) | 
						
							| 9 |  | mulcomsr |  |-  ( x .R w ) = ( w .R x ) | 
						
							| 10 | 8 9 | oveq12i |  |-  ( ( y .R z ) +R ( x .R w ) ) = ( ( z .R y ) +R ( w .R x ) ) | 
						
							| 11 |  | addcomsr |  |-  ( ( z .R y ) +R ( w .R x ) ) = ( ( w .R x ) +R ( z .R y ) ) | 
						
							| 12 | 10 11 | eqtri |  |-  ( ( y .R z ) +R ( x .R w ) ) = ( ( w .R x ) +R ( z .R y ) ) | 
						
							| 13 | 1 2 3 7 12 | ecovcom |  |-  ( ( A e. CC /\ B e. CC ) -> ( A x. B ) = ( B x. A ) ) |