Metamath Proof Explorer


Theorem axprOLD

Description: Obsolete version of axpr as of 18-Sep-2025. (Contributed by NM, 14-Nov-2006) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion axprOLD 𝑧𝑤 ( ( 𝑤 = 𝑥𝑤 = 𝑦 ) → 𝑤𝑧 )

Proof

Step Hyp Ref Expression
1 axprlem3OLD 𝑧𝑤 ( 𝑤𝑧 ↔ ∃ 𝑠 ( 𝑠𝑝 ∧ if- ( ∃ 𝑛 𝑛𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) )
2 biimpr ( ( 𝑤𝑧 ↔ ∃ 𝑠 ( 𝑠𝑝 ∧ if- ( ∃ 𝑛 𝑛𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) ) → ( ∃ 𝑠 ( 𝑠𝑝 ∧ if- ( ∃ 𝑛 𝑛𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) → 𝑤𝑧 ) )
3 2 alimi ( ∀ 𝑤 ( 𝑤𝑧 ↔ ∃ 𝑠 ( 𝑠𝑝 ∧ if- ( ∃ 𝑛 𝑛𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) ) → ∀ 𝑤 ( ∃ 𝑠 ( 𝑠𝑝 ∧ if- ( ∃ 𝑛 𝑛𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) → 𝑤𝑧 ) )
4 1 3 eximii 𝑧𝑤 ( ∃ 𝑠 ( 𝑠𝑝 ∧ if- ( ∃ 𝑛 𝑛𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) → 𝑤𝑧 )
5 axprlem4OLD ( ( ∀ 𝑠 ( ∀ 𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝 ) ∧ 𝑤 = 𝑥 ) → ∃ 𝑠 ( 𝑠𝑝 ∧ if- ( ∃ 𝑛 𝑛𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) )
6 axprlem5OLD ( ( ∀ 𝑠 ( ∀ 𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝 ) ∧ 𝑤 = 𝑦 ) → ∃ 𝑠 ( 𝑠𝑝 ∧ if- ( ∃ 𝑛 𝑛𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) )
7 5 6 jaodan ( ( ∀ 𝑠 ( ∀ 𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝 ) ∧ ( 𝑤 = 𝑥𝑤 = 𝑦 ) ) → ∃ 𝑠 ( 𝑠𝑝 ∧ if- ( ∃ 𝑛 𝑛𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) )
8 7 ex ( ∀ 𝑠 ( ∀ 𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝 ) → ( ( 𝑤 = 𝑥𝑤 = 𝑦 ) → ∃ 𝑠 ( 𝑠𝑝 ∧ if- ( ∃ 𝑛 𝑛𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) ) )
9 8 imim1d ( ∀ 𝑠 ( ∀ 𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝 ) → ( ( ∃ 𝑠 ( 𝑠𝑝 ∧ if- ( ∃ 𝑛 𝑛𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) → 𝑤𝑧 ) → ( ( 𝑤 = 𝑥𝑤 = 𝑦 ) → 𝑤𝑧 ) ) )
10 9 alimdv ( ∀ 𝑠 ( ∀ 𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝 ) → ( ∀ 𝑤 ( ∃ 𝑠 ( 𝑠𝑝 ∧ if- ( ∃ 𝑛 𝑛𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) → 𝑤𝑧 ) → ∀ 𝑤 ( ( 𝑤 = 𝑥𝑤 = 𝑦 ) → 𝑤𝑧 ) ) )
11 10 eximdv ( ∀ 𝑠 ( ∀ 𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝 ) → ( ∃ 𝑧𝑤 ( ∃ 𝑠 ( 𝑠𝑝 ∧ if- ( ∃ 𝑛 𝑛𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) → 𝑤𝑧 ) → ∃ 𝑧𝑤 ( ( 𝑤 = 𝑥𝑤 = 𝑦 ) → 𝑤𝑧 ) ) )
12 4 11 mpi ( ∀ 𝑠 ( ∀ 𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝 ) → ∃ 𝑧𝑤 ( ( 𝑤 = 𝑥𝑤 = 𝑦 ) → 𝑤𝑧 ) )
13 axprlem2 𝑝𝑠 ( ∀ 𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝 )
14 12 13 exlimiiv 𝑧𝑤 ( ( 𝑤 = 𝑥𝑤 = 𝑦 ) → 𝑤𝑧 )