Step |
Hyp |
Ref |
Expression |
1 |
|
axprlem3OLD |
⊢ ∃ 𝑧 ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ ∃ 𝑠 ( 𝑠 ∈ 𝑝 ∧ if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) ) |
2 |
|
biimpr |
⊢ ( ( 𝑤 ∈ 𝑧 ↔ ∃ 𝑠 ( 𝑠 ∈ 𝑝 ∧ if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) ) → ( ∃ 𝑠 ( 𝑠 ∈ 𝑝 ∧ if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) → 𝑤 ∈ 𝑧 ) ) |
3 |
2
|
alimi |
⊢ ( ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ ∃ 𝑠 ( 𝑠 ∈ 𝑝 ∧ if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) ) → ∀ 𝑤 ( ∃ 𝑠 ( 𝑠 ∈ 𝑝 ∧ if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) → 𝑤 ∈ 𝑧 ) ) |
4 |
1 3
|
eximii |
⊢ ∃ 𝑧 ∀ 𝑤 ( ∃ 𝑠 ( 𝑠 ∈ 𝑝 ∧ if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) → 𝑤 ∈ 𝑧 ) |
5 |
|
axprlem4OLD |
⊢ ( ( ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) ∧ 𝑤 = 𝑥 ) → ∃ 𝑠 ( 𝑠 ∈ 𝑝 ∧ if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) ) |
6 |
|
axprlem5OLD |
⊢ ( ( ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) ∧ 𝑤 = 𝑦 ) → ∃ 𝑠 ( 𝑠 ∈ 𝑝 ∧ if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) ) |
7 |
5 6
|
jaodan |
⊢ ( ( ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) ∧ ( 𝑤 = 𝑥 ∨ 𝑤 = 𝑦 ) ) → ∃ 𝑠 ( 𝑠 ∈ 𝑝 ∧ if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) ) |
8 |
7
|
ex |
⊢ ( ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) → ( ( 𝑤 = 𝑥 ∨ 𝑤 = 𝑦 ) → ∃ 𝑠 ( 𝑠 ∈ 𝑝 ∧ if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) ) ) |
9 |
8
|
imim1d |
⊢ ( ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) → ( ( ∃ 𝑠 ( 𝑠 ∈ 𝑝 ∧ if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) → 𝑤 ∈ 𝑧 ) → ( ( 𝑤 = 𝑥 ∨ 𝑤 = 𝑦 ) → 𝑤 ∈ 𝑧 ) ) ) |
10 |
9
|
alimdv |
⊢ ( ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) → ( ∀ 𝑤 ( ∃ 𝑠 ( 𝑠 ∈ 𝑝 ∧ if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) → 𝑤 ∈ 𝑧 ) → ∀ 𝑤 ( ( 𝑤 = 𝑥 ∨ 𝑤 = 𝑦 ) → 𝑤 ∈ 𝑧 ) ) ) |
11 |
10
|
eximdv |
⊢ ( ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) → ( ∃ 𝑧 ∀ 𝑤 ( ∃ 𝑠 ( 𝑠 ∈ 𝑝 ∧ if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) → 𝑤 ∈ 𝑧 ) → ∃ 𝑧 ∀ 𝑤 ( ( 𝑤 = 𝑥 ∨ 𝑤 = 𝑦 ) → 𝑤 ∈ 𝑧 ) ) ) |
12 |
4 11
|
mpi |
⊢ ( ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) → ∃ 𝑧 ∀ 𝑤 ( ( 𝑤 = 𝑥 ∨ 𝑤 = 𝑦 ) → 𝑤 ∈ 𝑧 ) ) |
13 |
|
axprlem2 |
⊢ ∃ 𝑝 ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) |
14 |
12 13
|
exlimiiv |
⊢ ∃ 𝑧 ∀ 𝑤 ( ( 𝑤 = 𝑥 ∨ 𝑤 = 𝑦 ) → 𝑤 ∈ 𝑧 ) |