Metamath Proof Explorer


Theorem axprlem2

Description: Lemma for axpr . There exists a set to which all sets whose only members are empty sets belong. (Contributed by Rohan Ridenour, 9-Aug-2023) (Revised by BJ, 13-Aug-2023)

Ref Expression
Assertion axprlem2 𝑥𝑦 ( ∀ 𝑧𝑦𝑤 ¬ 𝑤𝑧𝑦𝑥 )

Proof

Step Hyp Ref Expression
1 ax-pow 𝑥𝑦 ( ∀ 𝑧 ( 𝑧𝑦𝑧𝑣 ) → 𝑦𝑥 )
2 df-ral ( ∀ 𝑧𝑦𝑤 ¬ 𝑤𝑧 ↔ ∀ 𝑧 ( 𝑧𝑦 → ∀ 𝑤 ¬ 𝑤𝑧 ) )
3 imim2 ( ( ∀ 𝑤 ¬ 𝑤𝑧𝑧𝑣 ) → ( ( 𝑧𝑦 → ∀ 𝑤 ¬ 𝑤𝑧 ) → ( 𝑧𝑦𝑧𝑣 ) ) )
4 3 al2imi ( ∀ 𝑧 ( ∀ 𝑤 ¬ 𝑤𝑧𝑧𝑣 ) → ( ∀ 𝑧 ( 𝑧𝑦 → ∀ 𝑤 ¬ 𝑤𝑧 ) → ∀ 𝑧 ( 𝑧𝑦𝑧𝑣 ) ) )
5 2 4 syl5bi ( ∀ 𝑧 ( ∀ 𝑤 ¬ 𝑤𝑧𝑧𝑣 ) → ( ∀ 𝑧𝑦𝑤 ¬ 𝑤𝑧 → ∀ 𝑧 ( 𝑧𝑦𝑧𝑣 ) ) )
6 5 imim1d ( ∀ 𝑧 ( ∀ 𝑤 ¬ 𝑤𝑧𝑧𝑣 ) → ( ( ∀ 𝑧 ( 𝑧𝑦𝑧𝑣 ) → 𝑦𝑥 ) → ( ∀ 𝑧𝑦𝑤 ¬ 𝑤𝑧𝑦𝑥 ) ) )
7 6 alimdv ( ∀ 𝑧 ( ∀ 𝑤 ¬ 𝑤𝑧𝑧𝑣 ) → ( ∀ 𝑦 ( ∀ 𝑧 ( 𝑧𝑦𝑧𝑣 ) → 𝑦𝑥 ) → ∀ 𝑦 ( ∀ 𝑧𝑦𝑤 ¬ 𝑤𝑧𝑦𝑥 ) ) )
8 7 eximdv ( ∀ 𝑧 ( ∀ 𝑤 ¬ 𝑤𝑧𝑧𝑣 ) → ( ∃ 𝑥𝑦 ( ∀ 𝑧 ( 𝑧𝑦𝑧𝑣 ) → 𝑦𝑥 ) → ∃ 𝑥𝑦 ( ∀ 𝑧𝑦𝑤 ¬ 𝑤𝑧𝑦𝑥 ) ) )
9 1 8 mpi ( ∀ 𝑧 ( ∀ 𝑤 ¬ 𝑤𝑧𝑧𝑣 ) → ∃ 𝑥𝑦 ( ∀ 𝑧𝑦𝑤 ¬ 𝑤𝑧𝑦𝑥 ) )
10 axprlem1 𝑣𝑧 ( ∀ 𝑤 ¬ 𝑤𝑧𝑧𝑣 )
11 9 10 exlimiiv 𝑥𝑦 ( ∀ 𝑧𝑦𝑤 ¬ 𝑤𝑧𝑦𝑥 )