| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axrep4v | ⊢ ( ∀ 𝑠 ∃ 𝑧 ∀ 𝑤 ( if- ( ∃ 𝑛 𝑛  ∈  𝑠 ,  𝑤  =  𝑥 ,  𝑤  =  𝑦 )  →  𝑤  =  𝑧 )  →  ∃ 𝑧 ∀ 𝑤 ( 𝑤  ∈  𝑧  ↔  ∃ 𝑠 ( 𝑠  ∈  𝑝  ∧  if- ( ∃ 𝑛 𝑛  ∈  𝑠 ,  𝑤  =  𝑥 ,  𝑤  =  𝑦 ) ) ) ) | 
						
							| 2 |  | ifptru | ⊢ ( ∃ 𝑛 𝑛  ∈  𝑠  →  ( if- ( ∃ 𝑛 𝑛  ∈  𝑠 ,  𝑤  =  𝑥 ,  𝑤  =  𝑦 )  ↔  𝑤  =  𝑥 ) ) | 
						
							| 3 | 2 | biimpd | ⊢ ( ∃ 𝑛 𝑛  ∈  𝑠  →  ( if- ( ∃ 𝑛 𝑛  ∈  𝑠 ,  𝑤  =  𝑥 ,  𝑤  =  𝑦 )  →  𝑤  =  𝑥 ) ) | 
						
							| 4 |  | equeuclr | ⊢ ( 𝑧  =  𝑥  →  ( 𝑤  =  𝑥  →  𝑤  =  𝑧 ) ) | 
						
							| 5 | 3 4 | syl9r | ⊢ ( 𝑧  =  𝑥  →  ( ∃ 𝑛 𝑛  ∈  𝑠  →  ( if- ( ∃ 𝑛 𝑛  ∈  𝑠 ,  𝑤  =  𝑥 ,  𝑤  =  𝑦 )  →  𝑤  =  𝑧 ) ) ) | 
						
							| 6 | 5 | alrimdv | ⊢ ( 𝑧  =  𝑥  →  ( ∃ 𝑛 𝑛  ∈  𝑠  →  ∀ 𝑤 ( if- ( ∃ 𝑛 𝑛  ∈  𝑠 ,  𝑤  =  𝑥 ,  𝑤  =  𝑦 )  →  𝑤  =  𝑧 ) ) ) | 
						
							| 7 | 6 | spimevw | ⊢ ( ∃ 𝑛 𝑛  ∈  𝑠  →  ∃ 𝑧 ∀ 𝑤 ( if- ( ∃ 𝑛 𝑛  ∈  𝑠 ,  𝑤  =  𝑥 ,  𝑤  =  𝑦 )  →  𝑤  =  𝑧 ) ) | 
						
							| 8 |  | ifpfal | ⊢ ( ¬  ∃ 𝑛 𝑛  ∈  𝑠  →  ( if- ( ∃ 𝑛 𝑛  ∈  𝑠 ,  𝑤  =  𝑥 ,  𝑤  =  𝑦 )  ↔  𝑤  =  𝑦 ) ) | 
						
							| 9 | 8 | biimpd | ⊢ ( ¬  ∃ 𝑛 𝑛  ∈  𝑠  →  ( if- ( ∃ 𝑛 𝑛  ∈  𝑠 ,  𝑤  =  𝑥 ,  𝑤  =  𝑦 )  →  𝑤  =  𝑦 ) ) | 
						
							| 10 |  | equeuclr | ⊢ ( 𝑧  =  𝑦  →  ( 𝑤  =  𝑦  →  𝑤  =  𝑧 ) ) | 
						
							| 11 | 9 10 | syl9r | ⊢ ( 𝑧  =  𝑦  →  ( ¬  ∃ 𝑛 𝑛  ∈  𝑠  →  ( if- ( ∃ 𝑛 𝑛  ∈  𝑠 ,  𝑤  =  𝑥 ,  𝑤  =  𝑦 )  →  𝑤  =  𝑧 ) ) ) | 
						
							| 12 | 11 | alrimdv | ⊢ ( 𝑧  =  𝑦  →  ( ¬  ∃ 𝑛 𝑛  ∈  𝑠  →  ∀ 𝑤 ( if- ( ∃ 𝑛 𝑛  ∈  𝑠 ,  𝑤  =  𝑥 ,  𝑤  =  𝑦 )  →  𝑤  =  𝑧 ) ) ) | 
						
							| 13 | 12 | spimevw | ⊢ ( ¬  ∃ 𝑛 𝑛  ∈  𝑠  →  ∃ 𝑧 ∀ 𝑤 ( if- ( ∃ 𝑛 𝑛  ∈  𝑠 ,  𝑤  =  𝑥 ,  𝑤  =  𝑦 )  →  𝑤  =  𝑧 ) ) | 
						
							| 14 | 7 13 | pm2.61i | ⊢ ∃ 𝑧 ∀ 𝑤 ( if- ( ∃ 𝑛 𝑛  ∈  𝑠 ,  𝑤  =  𝑥 ,  𝑤  =  𝑦 )  →  𝑤  =  𝑧 ) | 
						
							| 15 | 1 14 | mpg | ⊢ ∃ 𝑧 ∀ 𝑤 ( 𝑤  ∈  𝑧  ↔  ∃ 𝑠 ( 𝑠  ∈  𝑝  ∧  if- ( ∃ 𝑛 𝑛  ∈  𝑠 ,  𝑤  =  𝑥 ,  𝑤  =  𝑦 ) ) ) |