Step |
Hyp |
Ref |
Expression |
1 |
|
axprlem1 |
⊢ ∃ 𝑠 ∀ 𝑛 ( ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑛 ∈ 𝑠 ) |
2 |
1
|
bm1.3ii |
⊢ ∃ 𝑠 ∀ 𝑛 ( 𝑛 ∈ 𝑠 ↔ ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 ) |
3 |
|
nfa1 |
⊢ Ⅎ 𝑠 ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) |
4 |
|
nfv |
⊢ Ⅎ 𝑠 𝑤 = 𝑥 |
5 |
3 4
|
nfan |
⊢ Ⅎ 𝑠 ( ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) ∧ 𝑤 = 𝑥 ) |
6 |
|
biimp |
⊢ ( ( 𝑛 ∈ 𝑠 ↔ ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 ) → ( 𝑛 ∈ 𝑠 → ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 ) ) |
7 |
6
|
alimi |
⊢ ( ∀ 𝑛 ( 𝑛 ∈ 𝑠 ↔ ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 ) → ∀ 𝑛 ( 𝑛 ∈ 𝑠 → ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 ) ) |
8 |
|
df-ral |
⊢ ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 ↔ ∀ 𝑛 ( 𝑛 ∈ 𝑠 → ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 ) ) |
9 |
7 8
|
sylibr |
⊢ ( ∀ 𝑛 ( 𝑛 ∈ 𝑠 ↔ ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 ) → ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 ) |
10 |
|
sp |
⊢ ( ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) → ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) ) |
11 |
9 10
|
mpan9 |
⊢ ( ( ∀ 𝑛 ( 𝑛 ∈ 𝑠 ↔ ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 ) ∧ ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) ) → 𝑠 ∈ 𝑝 ) |
12 |
11
|
adantrr |
⊢ ( ( ∀ 𝑛 ( 𝑛 ∈ 𝑠 ↔ ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 ) ∧ ( ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) ∧ 𝑤 = 𝑥 ) ) → 𝑠 ∈ 𝑝 ) |
13 |
|
ax-nul |
⊢ ∃ 𝑛 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 |
14 |
|
nfa1 |
⊢ Ⅎ 𝑛 ∀ 𝑛 ( 𝑛 ∈ 𝑠 ↔ ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 ) |
15 |
|
sp |
⊢ ( ∀ 𝑛 ( 𝑛 ∈ 𝑠 ↔ ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 ) → ( 𝑛 ∈ 𝑠 ↔ ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 ) ) |
16 |
15
|
biimprd |
⊢ ( ∀ 𝑛 ( 𝑛 ∈ 𝑠 ↔ ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 ) → ( ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑛 ∈ 𝑠 ) ) |
17 |
14 16
|
eximd |
⊢ ( ∀ 𝑛 ( 𝑛 ∈ 𝑠 ↔ ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 ) → ( ∃ 𝑛 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → ∃ 𝑛 𝑛 ∈ 𝑠 ) ) |
18 |
13 17
|
mpi |
⊢ ( ∀ 𝑛 ( 𝑛 ∈ 𝑠 ↔ ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 ) → ∃ 𝑛 𝑛 ∈ 𝑠 ) |
19 |
|
simprr |
⊢ ( ( ∀ 𝑛 ( 𝑛 ∈ 𝑠 ↔ ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 ) ∧ ( ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) ∧ 𝑤 = 𝑥 ) ) → 𝑤 = 𝑥 ) |
20 |
|
ifptru |
⊢ ( ∃ 𝑛 𝑛 ∈ 𝑠 → ( if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ↔ 𝑤 = 𝑥 ) ) |
21 |
20
|
biimpar |
⊢ ( ( ∃ 𝑛 𝑛 ∈ 𝑠 ∧ 𝑤 = 𝑥 ) → if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) |
22 |
18 19 21
|
syl2an2r |
⊢ ( ( ∀ 𝑛 ( 𝑛 ∈ 𝑠 ↔ ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 ) ∧ ( ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) ∧ 𝑤 = 𝑥 ) ) → if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) |
23 |
12 22
|
jca |
⊢ ( ( ∀ 𝑛 ( 𝑛 ∈ 𝑠 ↔ ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 ) ∧ ( ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) ∧ 𝑤 = 𝑥 ) ) → ( 𝑠 ∈ 𝑝 ∧ if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) ) |
24 |
23
|
expcom |
⊢ ( ( ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) ∧ 𝑤 = 𝑥 ) → ( ∀ 𝑛 ( 𝑛 ∈ 𝑠 ↔ ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 ) → ( 𝑠 ∈ 𝑝 ∧ if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) ) ) |
25 |
5 24
|
eximd |
⊢ ( ( ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) ∧ 𝑤 = 𝑥 ) → ( ∃ 𝑠 ∀ 𝑛 ( 𝑛 ∈ 𝑠 ↔ ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 ) → ∃ 𝑠 ( 𝑠 ∈ 𝑝 ∧ if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) ) ) |
26 |
2 25
|
mpi |
⊢ ( ( ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) ∧ 𝑤 = 𝑥 ) → ∃ 𝑠 ( 𝑠 ∈ 𝑝 ∧ if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) ) |