Description: A symmetry with <-> .
See negsym1 for more information. (Contributed by Anthony Hart, 4-Sep-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | bisym1 | ⊢ ( ( 𝜓 ↔ ( 𝜓 ↔ ⊥ ) ) → ( 𝜓 ↔ 𝜑 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nbfal | ⊢ ( ¬ 𝜓 ↔ ( 𝜓 ↔ ⊥ ) ) | |
2 | 1 | bibi2i | ⊢ ( ( 𝜓 ↔ ¬ 𝜓 ) ↔ ( 𝜓 ↔ ( 𝜓 ↔ ⊥ ) ) ) |
3 | pm5.19 | ⊢ ¬ ( 𝜓 ↔ ¬ 𝜓 ) | |
4 | 3 | pm2.21i | ⊢ ( ( 𝜓 ↔ ¬ 𝜓 ) → ( 𝜓 ↔ 𝜑 ) ) |
5 | 2 4 | sylbir | ⊢ ( ( 𝜓 ↔ ( 𝜓 ↔ ⊥ ) ) → ( 𝜓 ↔ 𝜑 ) ) |