Metamath Proof Explorer


Theorem bitsf1o

Description: The bits function restricted to nonnegative integers is a bijection from the integers to the finite sets of integers. It is in fact the inverse of the Ackermann bijection ackbijnn . (Contributed by Mario Carneiro, 8-Sep-2016)

Ref Expression
Assertion bitsf1o ( bits ↾ ℕ0 ) : ℕ01-1-onto→ ( 𝒫 ℕ0 ∩ Fin )

Proof

Step Hyp Ref Expression
1 bitsf1ocnv ( ( bits ↾ ℕ0 ) : ℕ01-1-onto→ ( 𝒫 ℕ0 ∩ Fin ) ∧ ( bits ↾ ℕ0 ) = ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ Σ 𝑛𝑥 ( 2 ↑ 𝑛 ) ) )
2 1 simpli ( bits ↾ ℕ0 ) : ℕ01-1-onto→ ( 𝒫 ℕ0 ∩ Fin )