| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bitsf |
⊢ bits : ℤ ⟶ 𝒫 ℕ0 |
| 2 |
|
simpl |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → 𝑥 ∈ ℤ ) |
| 3 |
2
|
zcnd |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → 𝑥 ∈ ℂ ) |
| 4 |
3
|
adantr |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( - 𝑥 ∈ ℕ ∧ ( bits ‘ 𝑥 ) = ( bits ‘ 𝑦 ) ) ) → 𝑥 ∈ ℂ ) |
| 5 |
|
simpr |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → 𝑦 ∈ ℤ ) |
| 6 |
5
|
zcnd |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → 𝑦 ∈ ℂ ) |
| 7 |
6
|
adantr |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( - 𝑥 ∈ ℕ ∧ ( bits ‘ 𝑥 ) = ( bits ‘ 𝑦 ) ) ) → 𝑦 ∈ ℂ ) |
| 8 |
4
|
negcld |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( - 𝑥 ∈ ℕ ∧ ( bits ‘ 𝑥 ) = ( bits ‘ 𝑦 ) ) ) → - 𝑥 ∈ ℂ ) |
| 9 |
7
|
negcld |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( - 𝑥 ∈ ℕ ∧ ( bits ‘ 𝑥 ) = ( bits ‘ 𝑦 ) ) ) → - 𝑦 ∈ ℂ ) |
| 10 |
|
1cnd |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( - 𝑥 ∈ ℕ ∧ ( bits ‘ 𝑥 ) = ( bits ‘ 𝑦 ) ) ) → 1 ∈ ℂ ) |
| 11 |
|
simprr |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( - 𝑥 ∈ ℕ ∧ ( bits ‘ 𝑥 ) = ( bits ‘ 𝑦 ) ) ) → ( bits ‘ 𝑥 ) = ( bits ‘ 𝑦 ) ) |
| 12 |
11
|
difeq2d |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( - 𝑥 ∈ ℕ ∧ ( bits ‘ 𝑥 ) = ( bits ‘ 𝑦 ) ) ) → ( ℕ0 ∖ ( bits ‘ 𝑥 ) ) = ( ℕ0 ∖ ( bits ‘ 𝑦 ) ) ) |
| 13 |
|
bitscmp |
⊢ ( 𝑥 ∈ ℤ → ( ℕ0 ∖ ( bits ‘ 𝑥 ) ) = ( bits ‘ ( - 𝑥 − 1 ) ) ) |
| 14 |
13
|
ad2antrr |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( - 𝑥 ∈ ℕ ∧ ( bits ‘ 𝑥 ) = ( bits ‘ 𝑦 ) ) ) → ( ℕ0 ∖ ( bits ‘ 𝑥 ) ) = ( bits ‘ ( - 𝑥 − 1 ) ) ) |
| 15 |
|
bitscmp |
⊢ ( 𝑦 ∈ ℤ → ( ℕ0 ∖ ( bits ‘ 𝑦 ) ) = ( bits ‘ ( - 𝑦 − 1 ) ) ) |
| 16 |
15
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( - 𝑥 ∈ ℕ ∧ ( bits ‘ 𝑥 ) = ( bits ‘ 𝑦 ) ) ) → ( ℕ0 ∖ ( bits ‘ 𝑦 ) ) = ( bits ‘ ( - 𝑦 − 1 ) ) ) |
| 17 |
12 14 16
|
3eqtr3d |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( - 𝑥 ∈ ℕ ∧ ( bits ‘ 𝑥 ) = ( bits ‘ 𝑦 ) ) ) → ( bits ‘ ( - 𝑥 − 1 ) ) = ( bits ‘ ( - 𝑦 − 1 ) ) ) |
| 18 |
|
nnm1nn0 |
⊢ ( - 𝑥 ∈ ℕ → ( - 𝑥 − 1 ) ∈ ℕ0 ) |
| 19 |
18
|
ad2antrl |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( - 𝑥 ∈ ℕ ∧ ( bits ‘ 𝑥 ) = ( bits ‘ 𝑦 ) ) ) → ( - 𝑥 − 1 ) ∈ ℕ0 ) |
| 20 |
19
|
fvresd |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( - 𝑥 ∈ ℕ ∧ ( bits ‘ 𝑥 ) = ( bits ‘ 𝑦 ) ) ) → ( ( bits ↾ ℕ0 ) ‘ ( - 𝑥 − 1 ) ) = ( bits ‘ ( - 𝑥 − 1 ) ) ) |
| 21 |
|
ominf |
⊢ ¬ ω ∈ Fin |
| 22 |
|
nn0ennn |
⊢ ℕ0 ≈ ℕ |
| 23 |
|
nnenom |
⊢ ℕ ≈ ω |
| 24 |
22 23
|
entr2i |
⊢ ω ≈ ℕ0 |
| 25 |
|
enfii |
⊢ ( ( ℕ0 ∈ Fin ∧ ω ≈ ℕ0 ) → ω ∈ Fin ) |
| 26 |
24 25
|
mpan2 |
⊢ ( ℕ0 ∈ Fin → ω ∈ Fin ) |
| 27 |
21 26
|
mto |
⊢ ¬ ℕ0 ∈ Fin |
| 28 |
|
difinf |
⊢ ( ( ¬ ℕ0 ∈ Fin ∧ ( bits ‘ 𝑥 ) ∈ Fin ) → ¬ ( ℕ0 ∖ ( bits ‘ 𝑥 ) ) ∈ Fin ) |
| 29 |
27 28
|
mpan |
⊢ ( ( bits ‘ 𝑥 ) ∈ Fin → ¬ ( ℕ0 ∖ ( bits ‘ 𝑥 ) ) ∈ Fin ) |
| 30 |
|
bitsfi |
⊢ ( ( - 𝑥 − 1 ) ∈ ℕ0 → ( bits ‘ ( - 𝑥 − 1 ) ) ∈ Fin ) |
| 31 |
19 30
|
syl |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( - 𝑥 ∈ ℕ ∧ ( bits ‘ 𝑥 ) = ( bits ‘ 𝑦 ) ) ) → ( bits ‘ ( - 𝑥 − 1 ) ) ∈ Fin ) |
| 32 |
14 31
|
eqeltrd |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( - 𝑥 ∈ ℕ ∧ ( bits ‘ 𝑥 ) = ( bits ‘ 𝑦 ) ) ) → ( ℕ0 ∖ ( bits ‘ 𝑥 ) ) ∈ Fin ) |
| 33 |
29 32
|
nsyl3 |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( - 𝑥 ∈ ℕ ∧ ( bits ‘ 𝑥 ) = ( bits ‘ 𝑦 ) ) ) → ¬ ( bits ‘ 𝑥 ) ∈ Fin ) |
| 34 |
11 33
|
eqneltrrd |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( - 𝑥 ∈ ℕ ∧ ( bits ‘ 𝑥 ) = ( bits ‘ 𝑦 ) ) ) → ¬ ( bits ‘ 𝑦 ) ∈ Fin ) |
| 35 |
|
bitsfi |
⊢ ( 𝑦 ∈ ℕ0 → ( bits ‘ 𝑦 ) ∈ Fin ) |
| 36 |
34 35
|
nsyl |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( - 𝑥 ∈ ℕ ∧ ( bits ‘ 𝑥 ) = ( bits ‘ 𝑦 ) ) ) → ¬ 𝑦 ∈ ℕ0 ) |
| 37 |
5
|
znegcld |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → - 𝑦 ∈ ℤ ) |
| 38 |
|
elznn |
⊢ ( - 𝑦 ∈ ℤ ↔ ( - 𝑦 ∈ ℝ ∧ ( - 𝑦 ∈ ℕ ∨ - - 𝑦 ∈ ℕ0 ) ) ) |
| 39 |
38
|
simprbi |
⊢ ( - 𝑦 ∈ ℤ → ( - 𝑦 ∈ ℕ ∨ - - 𝑦 ∈ ℕ0 ) ) |
| 40 |
37 39
|
syl |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( - 𝑦 ∈ ℕ ∨ - - 𝑦 ∈ ℕ0 ) ) |
| 41 |
6
|
negnegd |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → - - 𝑦 = 𝑦 ) |
| 42 |
41
|
eleq1d |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( - - 𝑦 ∈ ℕ0 ↔ 𝑦 ∈ ℕ0 ) ) |
| 43 |
42
|
orbi2d |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( ( - 𝑦 ∈ ℕ ∨ - - 𝑦 ∈ ℕ0 ) ↔ ( - 𝑦 ∈ ℕ ∨ 𝑦 ∈ ℕ0 ) ) ) |
| 44 |
40 43
|
mpbid |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( - 𝑦 ∈ ℕ ∨ 𝑦 ∈ ℕ0 ) ) |
| 45 |
44
|
adantr |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( - 𝑥 ∈ ℕ ∧ ( bits ‘ 𝑥 ) = ( bits ‘ 𝑦 ) ) ) → ( - 𝑦 ∈ ℕ ∨ 𝑦 ∈ ℕ0 ) ) |
| 46 |
45
|
ord |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( - 𝑥 ∈ ℕ ∧ ( bits ‘ 𝑥 ) = ( bits ‘ 𝑦 ) ) ) → ( ¬ - 𝑦 ∈ ℕ → 𝑦 ∈ ℕ0 ) ) |
| 47 |
36 46
|
mt3d |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( - 𝑥 ∈ ℕ ∧ ( bits ‘ 𝑥 ) = ( bits ‘ 𝑦 ) ) ) → - 𝑦 ∈ ℕ ) |
| 48 |
|
nnm1nn0 |
⊢ ( - 𝑦 ∈ ℕ → ( - 𝑦 − 1 ) ∈ ℕ0 ) |
| 49 |
47 48
|
syl |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( - 𝑥 ∈ ℕ ∧ ( bits ‘ 𝑥 ) = ( bits ‘ 𝑦 ) ) ) → ( - 𝑦 − 1 ) ∈ ℕ0 ) |
| 50 |
49
|
fvresd |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( - 𝑥 ∈ ℕ ∧ ( bits ‘ 𝑥 ) = ( bits ‘ 𝑦 ) ) ) → ( ( bits ↾ ℕ0 ) ‘ ( - 𝑦 − 1 ) ) = ( bits ‘ ( - 𝑦 − 1 ) ) ) |
| 51 |
17 20 50
|
3eqtr4d |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( - 𝑥 ∈ ℕ ∧ ( bits ‘ 𝑥 ) = ( bits ‘ 𝑦 ) ) ) → ( ( bits ↾ ℕ0 ) ‘ ( - 𝑥 − 1 ) ) = ( ( bits ↾ ℕ0 ) ‘ ( - 𝑦 − 1 ) ) ) |
| 52 |
|
bitsf1o |
⊢ ( bits ↾ ℕ0 ) : ℕ0 –1-1-onto→ ( 𝒫 ℕ0 ∩ Fin ) |
| 53 |
|
f1of1 |
⊢ ( ( bits ↾ ℕ0 ) : ℕ0 –1-1-onto→ ( 𝒫 ℕ0 ∩ Fin ) → ( bits ↾ ℕ0 ) : ℕ0 –1-1→ ( 𝒫 ℕ0 ∩ Fin ) ) |
| 54 |
52 53
|
ax-mp |
⊢ ( bits ↾ ℕ0 ) : ℕ0 –1-1→ ( 𝒫 ℕ0 ∩ Fin ) |
| 55 |
|
f1fveq |
⊢ ( ( ( bits ↾ ℕ0 ) : ℕ0 –1-1→ ( 𝒫 ℕ0 ∩ Fin ) ∧ ( ( - 𝑥 − 1 ) ∈ ℕ0 ∧ ( - 𝑦 − 1 ) ∈ ℕ0 ) ) → ( ( ( bits ↾ ℕ0 ) ‘ ( - 𝑥 − 1 ) ) = ( ( bits ↾ ℕ0 ) ‘ ( - 𝑦 − 1 ) ) ↔ ( - 𝑥 − 1 ) = ( - 𝑦 − 1 ) ) ) |
| 56 |
54 55
|
mpan |
⊢ ( ( ( - 𝑥 − 1 ) ∈ ℕ0 ∧ ( - 𝑦 − 1 ) ∈ ℕ0 ) → ( ( ( bits ↾ ℕ0 ) ‘ ( - 𝑥 − 1 ) ) = ( ( bits ↾ ℕ0 ) ‘ ( - 𝑦 − 1 ) ) ↔ ( - 𝑥 − 1 ) = ( - 𝑦 − 1 ) ) ) |
| 57 |
19 49 56
|
syl2anc |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( - 𝑥 ∈ ℕ ∧ ( bits ‘ 𝑥 ) = ( bits ‘ 𝑦 ) ) ) → ( ( ( bits ↾ ℕ0 ) ‘ ( - 𝑥 − 1 ) ) = ( ( bits ↾ ℕ0 ) ‘ ( - 𝑦 − 1 ) ) ↔ ( - 𝑥 − 1 ) = ( - 𝑦 − 1 ) ) ) |
| 58 |
51 57
|
mpbid |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( - 𝑥 ∈ ℕ ∧ ( bits ‘ 𝑥 ) = ( bits ‘ 𝑦 ) ) ) → ( - 𝑥 − 1 ) = ( - 𝑦 − 1 ) ) |
| 59 |
8 9 10 58
|
subcan2d |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( - 𝑥 ∈ ℕ ∧ ( bits ‘ 𝑥 ) = ( bits ‘ 𝑦 ) ) ) → - 𝑥 = - 𝑦 ) |
| 60 |
4 7 59
|
neg11d |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( - 𝑥 ∈ ℕ ∧ ( bits ‘ 𝑥 ) = ( bits ‘ 𝑦 ) ) ) → 𝑥 = 𝑦 ) |
| 61 |
60
|
expr |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ - 𝑥 ∈ ℕ ) → ( ( bits ‘ 𝑥 ) = ( bits ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 62 |
3
|
negnegd |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → - - 𝑥 = 𝑥 ) |
| 63 |
62
|
eleq1d |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( - - 𝑥 ∈ ℕ0 ↔ 𝑥 ∈ ℕ0 ) ) |
| 64 |
63
|
biimpa |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ - - 𝑥 ∈ ℕ0 ) → 𝑥 ∈ ℕ0 ) |
| 65 |
|
simprr |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑥 ∈ ℕ0 ∧ ( bits ‘ 𝑥 ) = ( bits ‘ 𝑦 ) ) ) → ( bits ‘ 𝑥 ) = ( bits ‘ 𝑦 ) ) |
| 66 |
|
fvres |
⊢ ( 𝑥 ∈ ℕ0 → ( ( bits ↾ ℕ0 ) ‘ 𝑥 ) = ( bits ‘ 𝑥 ) ) |
| 67 |
66
|
ad2antrl |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑥 ∈ ℕ0 ∧ ( bits ‘ 𝑥 ) = ( bits ‘ 𝑦 ) ) ) → ( ( bits ↾ ℕ0 ) ‘ 𝑥 ) = ( bits ‘ 𝑥 ) ) |
| 68 |
15
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑥 ∈ ℕ0 ∧ ( bits ‘ 𝑥 ) = ( bits ‘ 𝑦 ) ) ) → ( ℕ0 ∖ ( bits ‘ 𝑦 ) ) = ( bits ‘ ( - 𝑦 − 1 ) ) ) |
| 69 |
|
bitsfi |
⊢ ( 𝑥 ∈ ℕ0 → ( bits ‘ 𝑥 ) ∈ Fin ) |
| 70 |
69
|
ad2antrl |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑥 ∈ ℕ0 ∧ ( bits ‘ 𝑥 ) = ( bits ‘ 𝑦 ) ) ) → ( bits ‘ 𝑥 ) ∈ Fin ) |
| 71 |
65 70
|
eqeltrrd |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑥 ∈ ℕ0 ∧ ( bits ‘ 𝑥 ) = ( bits ‘ 𝑦 ) ) ) → ( bits ‘ 𝑦 ) ∈ Fin ) |
| 72 |
|
difinf |
⊢ ( ( ¬ ℕ0 ∈ Fin ∧ ( bits ‘ 𝑦 ) ∈ Fin ) → ¬ ( ℕ0 ∖ ( bits ‘ 𝑦 ) ) ∈ Fin ) |
| 73 |
27 71 72
|
sylancr |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑥 ∈ ℕ0 ∧ ( bits ‘ 𝑥 ) = ( bits ‘ 𝑦 ) ) ) → ¬ ( ℕ0 ∖ ( bits ‘ 𝑦 ) ) ∈ Fin ) |
| 74 |
68 73
|
eqneltrrd |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑥 ∈ ℕ0 ∧ ( bits ‘ 𝑥 ) = ( bits ‘ 𝑦 ) ) ) → ¬ ( bits ‘ ( - 𝑦 − 1 ) ) ∈ Fin ) |
| 75 |
|
bitsfi |
⊢ ( ( - 𝑦 − 1 ) ∈ ℕ0 → ( bits ‘ ( - 𝑦 − 1 ) ) ∈ Fin ) |
| 76 |
74 75
|
nsyl |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑥 ∈ ℕ0 ∧ ( bits ‘ 𝑥 ) = ( bits ‘ 𝑦 ) ) ) → ¬ ( - 𝑦 − 1 ) ∈ ℕ0 ) |
| 77 |
76 48
|
nsyl |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑥 ∈ ℕ0 ∧ ( bits ‘ 𝑥 ) = ( bits ‘ 𝑦 ) ) ) → ¬ - 𝑦 ∈ ℕ ) |
| 78 |
44
|
adantr |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑥 ∈ ℕ0 ∧ ( bits ‘ 𝑥 ) = ( bits ‘ 𝑦 ) ) ) → ( - 𝑦 ∈ ℕ ∨ 𝑦 ∈ ℕ0 ) ) |
| 79 |
78
|
ord |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑥 ∈ ℕ0 ∧ ( bits ‘ 𝑥 ) = ( bits ‘ 𝑦 ) ) ) → ( ¬ - 𝑦 ∈ ℕ → 𝑦 ∈ ℕ0 ) ) |
| 80 |
77 79
|
mpd |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑥 ∈ ℕ0 ∧ ( bits ‘ 𝑥 ) = ( bits ‘ 𝑦 ) ) ) → 𝑦 ∈ ℕ0 ) |
| 81 |
80
|
fvresd |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑥 ∈ ℕ0 ∧ ( bits ‘ 𝑥 ) = ( bits ‘ 𝑦 ) ) ) → ( ( bits ↾ ℕ0 ) ‘ 𝑦 ) = ( bits ‘ 𝑦 ) ) |
| 82 |
65 67 81
|
3eqtr4d |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑥 ∈ ℕ0 ∧ ( bits ‘ 𝑥 ) = ( bits ‘ 𝑦 ) ) ) → ( ( bits ↾ ℕ0 ) ‘ 𝑥 ) = ( ( bits ↾ ℕ0 ) ‘ 𝑦 ) ) |
| 83 |
|
simprl |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑥 ∈ ℕ0 ∧ ( bits ‘ 𝑥 ) = ( bits ‘ 𝑦 ) ) ) → 𝑥 ∈ ℕ0 ) |
| 84 |
|
f1fveq |
⊢ ( ( ( bits ↾ ℕ0 ) : ℕ0 –1-1→ ( 𝒫 ℕ0 ∩ Fin ) ∧ ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ) → ( ( ( bits ↾ ℕ0 ) ‘ 𝑥 ) = ( ( bits ↾ ℕ0 ) ‘ 𝑦 ) ↔ 𝑥 = 𝑦 ) ) |
| 85 |
54 84
|
mpan |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( ( ( bits ↾ ℕ0 ) ‘ 𝑥 ) = ( ( bits ↾ ℕ0 ) ‘ 𝑦 ) ↔ 𝑥 = 𝑦 ) ) |
| 86 |
83 80 85
|
syl2anc |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑥 ∈ ℕ0 ∧ ( bits ‘ 𝑥 ) = ( bits ‘ 𝑦 ) ) ) → ( ( ( bits ↾ ℕ0 ) ‘ 𝑥 ) = ( ( bits ↾ ℕ0 ) ‘ 𝑦 ) ↔ 𝑥 = 𝑦 ) ) |
| 87 |
82 86
|
mpbid |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑥 ∈ ℕ0 ∧ ( bits ‘ 𝑥 ) = ( bits ‘ 𝑦 ) ) ) → 𝑥 = 𝑦 ) |
| 88 |
87
|
expr |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ 𝑥 ∈ ℕ0 ) → ( ( bits ‘ 𝑥 ) = ( bits ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 89 |
64 88
|
syldan |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ - - 𝑥 ∈ ℕ0 ) → ( ( bits ‘ 𝑥 ) = ( bits ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 90 |
2
|
znegcld |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → - 𝑥 ∈ ℤ ) |
| 91 |
|
elznn |
⊢ ( - 𝑥 ∈ ℤ ↔ ( - 𝑥 ∈ ℝ ∧ ( - 𝑥 ∈ ℕ ∨ - - 𝑥 ∈ ℕ0 ) ) ) |
| 92 |
91
|
simprbi |
⊢ ( - 𝑥 ∈ ℤ → ( - 𝑥 ∈ ℕ ∨ - - 𝑥 ∈ ℕ0 ) ) |
| 93 |
90 92
|
syl |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( - 𝑥 ∈ ℕ ∨ - - 𝑥 ∈ ℕ0 ) ) |
| 94 |
61 89 93
|
mpjaodan |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( ( bits ‘ 𝑥 ) = ( bits ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 95 |
94
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ℤ ( ( bits ‘ 𝑥 ) = ( bits ‘ 𝑦 ) → 𝑥 = 𝑦 ) |
| 96 |
|
dff13 |
⊢ ( bits : ℤ –1-1→ 𝒫 ℕ0 ↔ ( bits : ℤ ⟶ 𝒫 ℕ0 ∧ ∀ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ℤ ( ( bits ‘ 𝑥 ) = ( bits ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 97 |
1 95 96
|
mpbir2an |
⊢ bits : ℤ –1-1→ 𝒫 ℕ0 |