Metamath Proof Explorer


Theorem bj-cbvex4vv

Description: Version of cbvex4v with a disjoint variable condition, which does not require ax-13 . (Contributed by BJ, 16-Jun-2019) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-cbvex4vv.1 ( ( 𝑥 = 𝑣𝑦 = 𝑢 ) → ( 𝜑𝜓 ) )
bj-cbvex4vv.2 ( ( 𝑧 = 𝑓𝑤 = 𝑔 ) → ( 𝜓𝜒 ) )
Assertion bj-cbvex4vv ( ∃ 𝑥𝑦𝑧𝑤 𝜑 ↔ ∃ 𝑣𝑢𝑓𝑔 𝜒 )

Proof

Step Hyp Ref Expression
1 bj-cbvex4vv.1 ( ( 𝑥 = 𝑣𝑦 = 𝑢 ) → ( 𝜑𝜓 ) )
2 bj-cbvex4vv.2 ( ( 𝑧 = 𝑓𝑤 = 𝑔 ) → ( 𝜓𝜒 ) )
3 1 2exbidv ( ( 𝑥 = 𝑣𝑦 = 𝑢 ) → ( ∃ 𝑧𝑤 𝜑 ↔ ∃ 𝑧𝑤 𝜓 ) )
4 3 cbvex2vw ( ∃ 𝑥𝑦𝑧𝑤 𝜑 ↔ ∃ 𝑣𝑢𝑧𝑤 𝜓 )
5 2 cbvex2vw ( ∃ 𝑧𝑤 𝜓 ↔ ∃ 𝑓𝑔 𝜒 )
6 5 2exbii ( ∃ 𝑣𝑢𝑧𝑤 𝜓 ↔ ∃ 𝑣𝑢𝑓𝑔 𝜒 )
7 4 6 bitri ( ∃ 𝑥𝑦𝑧𝑤 𝜑 ↔ ∃ 𝑣𝑢𝑓𝑔 𝜒 )