Metamath Proof Explorer


Theorem bj-cbvex4vv

Description: Version of cbvex4v with a disjoint variable condition, which does not require ax-13 . (Contributed by BJ, 16-Jun-2019) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-cbvex4vv.1
|- ( ( x = v /\ y = u ) -> ( ph <-> ps ) )
bj-cbvex4vv.2
|- ( ( z = f /\ w = g ) -> ( ps <-> ch ) )
Assertion bj-cbvex4vv
|- ( E. x E. y E. z E. w ph <-> E. v E. u E. f E. g ch )

Proof

Step Hyp Ref Expression
1 bj-cbvex4vv.1
 |-  ( ( x = v /\ y = u ) -> ( ph <-> ps ) )
2 bj-cbvex4vv.2
 |-  ( ( z = f /\ w = g ) -> ( ps <-> ch ) )
3 1 2exbidv
 |-  ( ( x = v /\ y = u ) -> ( E. z E. w ph <-> E. z E. w ps ) )
4 3 cbvex2vw
 |-  ( E. x E. y E. z E. w ph <-> E. v E. u E. z E. w ps )
5 2 cbvex2vw
 |-  ( E. z E. w ps <-> E. f E. g ch )
6 5 2exbii
 |-  ( E. v E. u E. z E. w ps <-> E. v E. u E. f E. g ch )
7 4 6 bitri
 |-  ( E. x E. y E. z E. w ph <-> E. v E. u E. f E. g ch )