Description: Version of cbvexd with a disjoint variable condition, which does not require ax-13 . (Contributed by BJ, 16-Jun-2019) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bj-cbvaldv.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| bj-cbvaldv.2 | ⊢ ( 𝜑 → Ⅎ 𝑦 𝜓 ) | ||
| bj-cbvaldv.3 | ⊢ ( 𝜑 → ( 𝑥 = 𝑦 → ( 𝜓 ↔ 𝜒 ) ) ) | ||
| Assertion | bj-cbvexdv | ⊢ ( 𝜑 → ( ∃ 𝑥 𝜓 ↔ ∃ 𝑦 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-cbvaldv.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| 2 | bj-cbvaldv.2 | ⊢ ( 𝜑 → Ⅎ 𝑦 𝜓 ) | |
| 3 | bj-cbvaldv.3 | ⊢ ( 𝜑 → ( 𝑥 = 𝑦 → ( 𝜓 ↔ 𝜒 ) ) ) | |
| 4 | 2 | nfnd | ⊢ ( 𝜑 → Ⅎ 𝑦 ¬ 𝜓 ) |
| 5 | notbi | ⊢ ( ( 𝜓 ↔ 𝜒 ) ↔ ( ¬ 𝜓 ↔ ¬ 𝜒 ) ) | |
| 6 | 3 5 | imbitrdi | ⊢ ( 𝜑 → ( 𝑥 = 𝑦 → ( ¬ 𝜓 ↔ ¬ 𝜒 ) ) ) |
| 7 | 1 4 6 | bj-cbvaldv | ⊢ ( 𝜑 → ( ∀ 𝑥 ¬ 𝜓 ↔ ∀ 𝑦 ¬ 𝜒 ) ) |
| 8 | 7 | notbid | ⊢ ( 𝜑 → ( ¬ ∀ 𝑥 ¬ 𝜓 ↔ ¬ ∀ 𝑦 ¬ 𝜒 ) ) |
| 9 | df-ex | ⊢ ( ∃ 𝑥 𝜓 ↔ ¬ ∀ 𝑥 ¬ 𝜓 ) | |
| 10 | df-ex | ⊢ ( ∃ 𝑦 𝜒 ↔ ¬ ∀ 𝑦 ¬ 𝜒 ) | |
| 11 | 8 9 10 | 3bitr4g | ⊢ ( 𝜑 → ( ∃ 𝑥 𝜓 ↔ ∃ 𝑦 𝜒 ) ) |