Step |
Hyp |
Ref |
Expression |
1 |
|
elisset |
⊢ ( 𝐵 ∈ 𝑉 → ∃ 𝑥 𝑥 = 𝐵 ) |
2 |
1
|
biantrurd |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ∈ 𝐵 ↔ ( ∃ 𝑥 𝑥 = 𝐵 ∧ 𝐴 ∈ 𝐵 ) ) ) |
3 |
|
19.41v |
⊢ ( ∃ 𝑥 ( 𝑥 = 𝐵 ∧ 𝐴 ∈ 𝐵 ) ↔ ( ∃ 𝑥 𝑥 = 𝐵 ∧ 𝐴 ∈ 𝐵 ) ) |
4 |
2 3
|
bitr4di |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ∈ 𝐵 ↔ ∃ 𝑥 ( 𝑥 = 𝐵 ∧ 𝐴 ∈ 𝐵 ) ) ) |
5 |
|
eleq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵 ) ) |
6 |
5
|
bicomd |
⊢ ( 𝑥 = 𝐵 → ( 𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝑥 ) ) |
7 |
6
|
pm5.32i |
⊢ ( ( 𝑥 = 𝐵 ∧ 𝐴 ∈ 𝐵 ) ↔ ( 𝑥 = 𝐵 ∧ 𝐴 ∈ 𝑥 ) ) |
8 |
7
|
exbii |
⊢ ( ∃ 𝑥 ( 𝑥 = 𝐵 ∧ 𝐴 ∈ 𝐵 ) ↔ ∃ 𝑥 ( 𝑥 = 𝐵 ∧ 𝐴 ∈ 𝑥 ) ) |
9 |
4 8
|
bitrdi |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ∈ 𝐵 ↔ ∃ 𝑥 ( 𝑥 = 𝐵 ∧ 𝐴 ∈ 𝑥 ) ) ) |