Metamath Proof Explorer


Theorem bj-clel3gALT

Description: Alternate proof of clel3g . (Contributed by BJ, 1-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion bj-clel3gALT ( 𝐵𝑉 → ( 𝐴𝐵 ↔ ∃ 𝑥 ( 𝑥 = 𝐵𝐴𝑥 ) ) )

Proof

Step Hyp Ref Expression
1 elisset ( 𝐵𝑉 → ∃ 𝑥 𝑥 = 𝐵 )
2 1 biantrurd ( 𝐵𝑉 → ( 𝐴𝐵 ↔ ( ∃ 𝑥 𝑥 = 𝐵𝐴𝐵 ) ) )
3 19.41v ( ∃ 𝑥 ( 𝑥 = 𝐵𝐴𝐵 ) ↔ ( ∃ 𝑥 𝑥 = 𝐵𝐴𝐵 ) )
4 2 3 bitr4di ( 𝐵𝑉 → ( 𝐴𝐵 ↔ ∃ 𝑥 ( 𝑥 = 𝐵𝐴𝐵 ) ) )
5 eleq2 ( 𝑥 = 𝐵 → ( 𝐴𝑥𝐴𝐵 ) )
6 5 bicomd ( 𝑥 = 𝐵 → ( 𝐴𝐵𝐴𝑥 ) )
7 6 pm5.32i ( ( 𝑥 = 𝐵𝐴𝐵 ) ↔ ( 𝑥 = 𝐵𝐴𝑥 ) )
8 7 exbii ( ∃ 𝑥 ( 𝑥 = 𝐵𝐴𝐵 ) ↔ ∃ 𝑥 ( 𝑥 = 𝐵𝐴𝑥 ) )
9 4 8 bitrdi ( 𝐵𝑉 → ( 𝐴𝐵 ↔ ∃ 𝑥 ( 𝑥 = 𝐵𝐴𝑥 ) ) )