| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elisset | ⊢ ( 𝐵  ∈  𝑉  →  ∃ 𝑥 𝑥  =  𝐵 ) | 
						
							| 2 | 1 | biantrurd | ⊢ ( 𝐵  ∈  𝑉  →  ( 𝐴  ∈  𝐵  ↔  ( ∃ 𝑥 𝑥  =  𝐵  ∧  𝐴  ∈  𝐵 ) ) ) | 
						
							| 3 |  | 19.41v | ⊢ ( ∃ 𝑥 ( 𝑥  =  𝐵  ∧  𝐴  ∈  𝐵 )  ↔  ( ∃ 𝑥 𝑥  =  𝐵  ∧  𝐴  ∈  𝐵 ) ) | 
						
							| 4 | 2 3 | bitr4di | ⊢ ( 𝐵  ∈  𝑉  →  ( 𝐴  ∈  𝐵  ↔  ∃ 𝑥 ( 𝑥  =  𝐵  ∧  𝐴  ∈  𝐵 ) ) ) | 
						
							| 5 |  | eleq2 | ⊢ ( 𝑥  =  𝐵  →  ( 𝐴  ∈  𝑥  ↔  𝐴  ∈  𝐵 ) ) | 
						
							| 6 | 5 | bicomd | ⊢ ( 𝑥  =  𝐵  →  ( 𝐴  ∈  𝐵  ↔  𝐴  ∈  𝑥 ) ) | 
						
							| 7 | 6 | pm5.32i | ⊢ ( ( 𝑥  =  𝐵  ∧  𝐴  ∈  𝐵 )  ↔  ( 𝑥  =  𝐵  ∧  𝐴  ∈  𝑥 ) ) | 
						
							| 8 | 7 | exbii | ⊢ ( ∃ 𝑥 ( 𝑥  =  𝐵  ∧  𝐴  ∈  𝐵 )  ↔  ∃ 𝑥 ( 𝑥  =  𝐵  ∧  𝐴  ∈  𝑥 ) ) | 
						
							| 9 | 4 8 | bitrdi | ⊢ ( 𝐵  ∈  𝑉  →  ( 𝐴  ∈  𝐵  ↔  ∃ 𝑥 ( 𝑥  =  𝐵  ∧  𝐴  ∈  𝑥 ) ) ) |