Metamath Proof Explorer


Theorem bj-clel3gALT

Description: Alternate proof of clel3g . (Contributed by BJ, 1-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion bj-clel3gALT
|- ( B e. V -> ( A e. B <-> E. x ( x = B /\ A e. x ) ) )

Proof

Step Hyp Ref Expression
1 elisset
 |-  ( B e. V -> E. x x = B )
2 1 biantrurd
 |-  ( B e. V -> ( A e. B <-> ( E. x x = B /\ A e. B ) ) )
3 19.41v
 |-  ( E. x ( x = B /\ A e. B ) <-> ( E. x x = B /\ A e. B ) )
4 2 3 bitr4di
 |-  ( B e. V -> ( A e. B <-> E. x ( x = B /\ A e. B ) ) )
5 eleq2
 |-  ( x = B -> ( A e. x <-> A e. B ) )
6 5 bicomd
 |-  ( x = B -> ( A e. B <-> A e. x ) )
7 6 pm5.32i
 |-  ( ( x = B /\ A e. B ) <-> ( x = B /\ A e. x ) )
8 7 exbii
 |-  ( E. x ( x = B /\ A e. B ) <-> E. x ( x = B /\ A e. x ) )
9 4 8 bitrdi
 |-  ( B e. V -> ( A e. B <-> E. x ( x = B /\ A e. x ) ) )