Metamath Proof Explorer


Theorem bj-dfbi6

Description: Alternate definition of the biconditional. (Contributed by BJ, 4-Oct-2019)

Ref Expression
Assertion bj-dfbi6 ( ( 𝜑𝜓 ) ↔ ( ( 𝜑𝜓 ) ↔ ( 𝜑𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 bj-dfbi5 ( ( 𝜑𝜓 ) ↔ ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) )
2 id ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) )
3 animorr ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) )
4 2 3 impbid1 ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) ↔ ( 𝜑𝜓 ) ) )
5 biimp ( ( ( 𝜑𝜓 ) ↔ ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) )
6 4 5 impbii ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ↔ ( ( 𝜑𝜓 ) ↔ ( 𝜑𝜓 ) ) )
7 1 6 bitri ( ( 𝜑𝜓 ) ↔ ( ( 𝜑𝜓 ) ↔ ( 𝜑𝜓 ) ) )