Description: Alternate definition of the biconditional. (Contributed by BJ, 4-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-dfbi6 | ⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ( ( 𝜑 ∨ 𝜓 ) ↔ ( 𝜑 ∧ 𝜓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-dfbi5 | ⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ( ( 𝜑 ∨ 𝜓 ) → ( 𝜑 ∧ 𝜓 ) ) ) | |
| 2 | id | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) → ( 𝜑 ∧ 𝜓 ) ) → ( ( 𝜑 ∨ 𝜓 ) → ( 𝜑 ∧ 𝜓 ) ) ) | |
| 3 | animorr | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝜑 ∨ 𝜓 ) ) | |
| 4 | 2 3 | impbid1 | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) → ( 𝜑 ∧ 𝜓 ) ) → ( ( 𝜑 ∨ 𝜓 ) ↔ ( 𝜑 ∧ 𝜓 ) ) ) |
| 5 | biimp | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) ↔ ( 𝜑 ∧ 𝜓 ) ) → ( ( 𝜑 ∨ 𝜓 ) → ( 𝜑 ∧ 𝜓 ) ) ) | |
| 6 | 4 5 | impbii | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) → ( 𝜑 ∧ 𝜓 ) ) ↔ ( ( 𝜑 ∨ 𝜓 ) ↔ ( 𝜑 ∧ 𝜓 ) ) ) |
| 7 | 1 6 | bitri | ⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ( ( 𝜑 ∨ 𝜓 ) ↔ ( 𝜑 ∧ 𝜓 ) ) ) |