Description: Alternate definition of the biconditional. (Contributed by BJ, 4-Oct-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-dfbi6 | ⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ( ( 𝜑 ∨ 𝜓 ) ↔ ( 𝜑 ∧ 𝜓 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-dfbi5 | ⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ( ( 𝜑 ∨ 𝜓 ) → ( 𝜑 ∧ 𝜓 ) ) ) | |
2 | id | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) → ( 𝜑 ∧ 𝜓 ) ) → ( ( 𝜑 ∨ 𝜓 ) → ( 𝜑 ∧ 𝜓 ) ) ) | |
3 | animorr | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝜑 ∨ 𝜓 ) ) | |
4 | 2 3 | impbid1 | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) → ( 𝜑 ∧ 𝜓 ) ) → ( ( 𝜑 ∨ 𝜓 ) ↔ ( 𝜑 ∧ 𝜓 ) ) ) |
5 | biimp | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) ↔ ( 𝜑 ∧ 𝜓 ) ) → ( ( 𝜑 ∨ 𝜓 ) → ( 𝜑 ∧ 𝜓 ) ) ) | |
6 | 4 5 | impbii | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) → ( 𝜑 ∧ 𝜓 ) ) ↔ ( ( 𝜑 ∨ 𝜓 ) ↔ ( 𝜑 ∧ 𝜓 ) ) ) |
7 | 1 6 | bitri | ⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ( ( 𝜑 ∨ 𝜓 ) ↔ ( 𝜑 ∧ 𝜓 ) ) ) |