Step |
Hyp |
Ref |
Expression |
1 |
|
bj-dfbi5 |
|- ( ( ph <-> ps ) <-> ( ( ph \/ ps ) -> ( ph /\ ps ) ) ) |
2 |
|
id |
|- ( ( ( ph \/ ps ) -> ( ph /\ ps ) ) -> ( ( ph \/ ps ) -> ( ph /\ ps ) ) ) |
3 |
|
animorr |
|- ( ( ph /\ ps ) -> ( ph \/ ps ) ) |
4 |
2 3
|
impbid1 |
|- ( ( ( ph \/ ps ) -> ( ph /\ ps ) ) -> ( ( ph \/ ps ) <-> ( ph /\ ps ) ) ) |
5 |
|
biimp |
|- ( ( ( ph \/ ps ) <-> ( ph /\ ps ) ) -> ( ( ph \/ ps ) -> ( ph /\ ps ) ) ) |
6 |
4 5
|
impbii |
|- ( ( ( ph \/ ps ) -> ( ph /\ ps ) ) <-> ( ( ph \/ ps ) <-> ( ph /\ ps ) ) ) |
7 |
1 6
|
bitri |
|- ( ( ph <-> ps ) <-> ( ( ph \/ ps ) <-> ( ph /\ ps ) ) ) |