| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bj-dfbi5 |
|- ( ( ph <-> ps ) <-> ( ( ph \/ ps ) -> ( ph /\ ps ) ) ) |
| 2 |
|
id |
|- ( ( ( ph \/ ps ) -> ( ph /\ ps ) ) -> ( ( ph \/ ps ) -> ( ph /\ ps ) ) ) |
| 3 |
|
animorr |
|- ( ( ph /\ ps ) -> ( ph \/ ps ) ) |
| 4 |
2 3
|
impbid1 |
|- ( ( ( ph \/ ps ) -> ( ph /\ ps ) ) -> ( ( ph \/ ps ) <-> ( ph /\ ps ) ) ) |
| 5 |
|
biimp |
|- ( ( ( ph \/ ps ) <-> ( ph /\ ps ) ) -> ( ( ph \/ ps ) -> ( ph /\ ps ) ) ) |
| 6 |
4 5
|
impbii |
|- ( ( ( ph \/ ps ) -> ( ph /\ ps ) ) <-> ( ( ph \/ ps ) <-> ( ph /\ ps ) ) ) |
| 7 |
1 6
|
bitri |
|- ( ( ph <-> ps ) <-> ( ( ph \/ ps ) <-> ( ph /\ ps ) ) ) |