Metamath Proof Explorer


Theorem bj-dfbi6

Description: Alternate definition of the biconditional. (Contributed by BJ, 4-Oct-2019)

Ref Expression
Assertion bj-dfbi6
|- ( ( ph <-> ps ) <-> ( ( ph \/ ps ) <-> ( ph /\ ps ) ) )

Proof

Step Hyp Ref Expression
1 bj-dfbi5
 |-  ( ( ph <-> ps ) <-> ( ( ph \/ ps ) -> ( ph /\ ps ) ) )
2 id
 |-  ( ( ( ph \/ ps ) -> ( ph /\ ps ) ) -> ( ( ph \/ ps ) -> ( ph /\ ps ) ) )
3 animorr
 |-  ( ( ph /\ ps ) -> ( ph \/ ps ) )
4 2 3 impbid1
 |-  ( ( ( ph \/ ps ) -> ( ph /\ ps ) ) -> ( ( ph \/ ps ) <-> ( ph /\ ps ) ) )
5 biimp
 |-  ( ( ( ph \/ ps ) <-> ( ph /\ ps ) ) -> ( ( ph \/ ps ) -> ( ph /\ ps ) ) )
6 4 5 impbii
 |-  ( ( ( ph \/ ps ) -> ( ph /\ ps ) ) <-> ( ( ph \/ ps ) <-> ( ph /\ ps ) ) )
7 1 6 bitri
 |-  ( ( ph <-> ps ) <-> ( ( ph \/ ps ) <-> ( ph /\ ps ) ) )