Description: Alternate definition of the biconditional. (Contributed by BJ, 4-Oct-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-dfbi5 | |- ( ( ph <-> ps ) <-> ( ( ph \/ ps ) -> ( ph /\ ps ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcom | |- ( ( ( ph /\ ps ) \/ -. ( ph \/ ps ) ) <-> ( -. ( ph \/ ps ) \/ ( ph /\ ps ) ) ) |
|
2 | bj-dfbi4 | |- ( ( ph <-> ps ) <-> ( ( ph /\ ps ) \/ -. ( ph \/ ps ) ) ) |
|
3 | imor | |- ( ( ( ph \/ ps ) -> ( ph /\ ps ) ) <-> ( -. ( ph \/ ps ) \/ ( ph /\ ps ) ) ) |
|
4 | 1 2 3 | 3bitr4i | |- ( ( ph <-> ps ) <-> ( ( ph \/ ps ) -> ( ph /\ ps ) ) ) |