Metamath Proof Explorer


Theorem bj-dfbi5

Description: Alternate definition of the biconditional. (Contributed by BJ, 4-Oct-2019)

Ref Expression
Assertion bj-dfbi5
|- ( ( ph <-> ps ) <-> ( ( ph \/ ps ) -> ( ph /\ ps ) ) )

Proof

Step Hyp Ref Expression
1 orcom
 |-  ( ( ( ph /\ ps ) \/ -. ( ph \/ ps ) ) <-> ( -. ( ph \/ ps ) \/ ( ph /\ ps ) ) )
2 bj-dfbi4
 |-  ( ( ph <-> ps ) <-> ( ( ph /\ ps ) \/ -. ( ph \/ ps ) ) )
3 imor
 |-  ( ( ( ph \/ ps ) -> ( ph /\ ps ) ) <-> ( -. ( ph \/ ps ) \/ ( ph /\ ps ) ) )
4 1 2 3 3bitr4i
 |-  ( ( ph <-> ps ) <-> ( ( ph \/ ps ) -> ( ph /\ ps ) ) )