Metamath Proof Explorer


Theorem bj-dfbi4

Description: Alternate definition of the biconditional. (Contributed by BJ, 4-Oct-2019)

Ref Expression
Assertion bj-dfbi4
|- ( ( ph <-> ps ) <-> ( ( ph /\ ps ) \/ -. ( ph \/ ps ) ) )

Proof

Step Hyp Ref Expression
1 dfbi3
 |-  ( ( ph <-> ps ) <-> ( ( ph /\ ps ) \/ ( -. ph /\ -. ps ) ) )
2 pm4.56
 |-  ( ( -. ph /\ -. ps ) <-> -. ( ph \/ ps ) )
3 2 orbi2i
 |-  ( ( ( ph /\ ps ) \/ ( -. ph /\ -. ps ) ) <-> ( ( ph /\ ps ) \/ -. ( ph \/ ps ) ) )
4 1 3 bitri
 |-  ( ( ph <-> ps ) <-> ( ( ph /\ ps ) \/ -. ( ph \/ ps ) ) )