Description: Alternate definition of the biconditional. (Contributed by BJ, 4-Oct-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-dfbi4 | |- ( ( ph <-> ps ) <-> ( ( ph /\ ps ) \/ -. ( ph \/ ps ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfbi3 | |- ( ( ph <-> ps ) <-> ( ( ph /\ ps ) \/ ( -. ph /\ -. ps ) ) ) |
|
2 | pm4.56 | |- ( ( -. ph /\ -. ps ) <-> -. ( ph \/ ps ) ) |
|
3 | 2 | orbi2i | |- ( ( ( ph /\ ps ) \/ ( -. ph /\ -. ps ) ) <-> ( ( ph /\ ps ) \/ -. ( ph \/ ps ) ) ) |
4 | 1 3 | bitri | |- ( ( ph <-> ps ) <-> ( ( ph /\ ps ) \/ -. ( ph \/ ps ) ) ) |