Description: Alternate definition of the biconditional. (Contributed by BJ, 4-Oct-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-dfbi4 | ⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ¬ ( 𝜑 ∨ 𝜓 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfbi3 | ⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ ¬ 𝜓 ) ) ) | |
2 | pm4.56 | ⊢ ( ( ¬ 𝜑 ∧ ¬ 𝜓 ) ↔ ¬ ( 𝜑 ∨ 𝜓 ) ) | |
3 | 2 | orbi2i | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ ¬ 𝜓 ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ¬ ( 𝜑 ∨ 𝜓 ) ) ) |
4 | 1 3 | bitri | ⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ¬ ( 𝜑 ∨ 𝜓 ) ) ) |