Metamath Proof Explorer


Theorem bj-dfbi4

Description: Alternate definition of the biconditional. (Contributed by BJ, 4-Oct-2019)

Ref Expression
Assertion bj-dfbi4 ( ( 𝜑𝜓 ) ↔ ( ( 𝜑𝜓 ) ∨ ¬ ( 𝜑𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 dfbi3 ( ( 𝜑𝜓 ) ↔ ( ( 𝜑𝜓 ) ∨ ( ¬ 𝜑 ∧ ¬ 𝜓 ) ) )
2 pm4.56 ( ( ¬ 𝜑 ∧ ¬ 𝜓 ) ↔ ¬ ( 𝜑𝜓 ) )
3 2 orbi2i ( ( ( 𝜑𝜓 ) ∨ ( ¬ 𝜑 ∧ ¬ 𝜓 ) ) ↔ ( ( 𝜑𝜓 ) ∨ ¬ ( 𝜑𝜓 ) ) )
4 1 3 bitri ( ( 𝜑𝜓 ) ↔ ( ( 𝜑𝜓 ) ∨ ¬ ( 𝜑𝜓 ) ) )