Metamath Proof Explorer


Theorem bj-dfbi5

Description: Alternate definition of the biconditional. (Contributed by BJ, 4-Oct-2019)

Ref Expression
Assertion bj-dfbi5 ( ( 𝜑𝜓 ) ↔ ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 orcom ( ( ( 𝜑𝜓 ) ∨ ¬ ( 𝜑𝜓 ) ) ↔ ( ¬ ( 𝜑𝜓 ) ∨ ( 𝜑𝜓 ) ) )
2 bj-dfbi4 ( ( 𝜑𝜓 ) ↔ ( ( 𝜑𝜓 ) ∨ ¬ ( 𝜑𝜓 ) ) )
3 imor ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ↔ ( ¬ ( 𝜑𝜓 ) ∨ ( 𝜑𝜓 ) ) )
4 1 2 3 3bitr4i ( ( 𝜑𝜓 ) ↔ ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) )