Description: Alternate definition of the biconditional. (Contributed by BJ, 4-Oct-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-dfbi5 | ⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ( ( 𝜑 ∨ 𝜓 ) → ( 𝜑 ∧ 𝜓 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcom | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∨ ¬ ( 𝜑 ∨ 𝜓 ) ) ↔ ( ¬ ( 𝜑 ∨ 𝜓 ) ∨ ( 𝜑 ∧ 𝜓 ) ) ) | |
2 | bj-dfbi4 | ⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ¬ ( 𝜑 ∨ 𝜓 ) ) ) | |
3 | imor | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) → ( 𝜑 ∧ 𝜓 ) ) ↔ ( ¬ ( 𝜑 ∨ 𝜓 ) ∨ ( 𝜑 ∧ 𝜓 ) ) ) | |
4 | 1 2 3 | 3bitr4i | ⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ( ( 𝜑 ∨ 𝜓 ) → ( 𝜑 ∧ 𝜓 ) ) ) |